Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x² - 1)(x² + 4x + 3) = 192
<=> (x - 1)(x + 1)(x + 1)(x + 3) = 192
<=> (x - 1)(x + 3)(x + 1)² = 192
<=> (x² + 2x - 3)(x² + 2x + 1) = 192
Đặt t = x² + 2x + 1 => x² + 2x - 3 = t - 4
ta có pt: (t - 4)t = 192
<=> t² - 4t - 192 = 0
<=> t = - 12 hoặc t = 16
*t = x² + 2x + 1 = -12: vn
*t = x² + 2x + 1 = 16
<=> (x+1)² = 16
<=> x = -5 hoặc x = 3
P/s: Anh tham khảo ở đây nha
Em đăng đề bài như em đăng câu em vừa hỏi là được mà em.
\(\Leftrightarrow2n+2-5⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{0;-2;4;-6\right\}\)
\(\frac{x}{5}=\frac{y}{3}\)và x2-y2=4(x,y>0)
\(\Rightarrow\frac{x}{5}=\frac{y}{3}=\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2-y^2}{25-9}=\frac{4}{16}=\frac{1}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\Rightarrow\frac{x^2}{25}=\frac{1}{4}\Rightarrow x^2=\frac{25}{4}\Rightarrow x=\frac{5}{2}\)
\(\Rightarrow\frac{y^2}{9}=\frac{1}{4}\Rightarrow y^2=\frac{9}{4}\Rightarrow y=\frac{3}{2}\)
Vậy x =\(\frac{5}{2}\)và y =\(\frac{3}{2}\)
Ta có:
\(\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{x^2}{3}=\frac{y^2}{5}\)
Áp dụng dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{3^2}=\frac{y^2}{5^2}=\frac{x^2-y^2}{3^2-5^2}=\frac{-4}{-16}=\frac{1}{4}\)
\(\Rightarrow\frac{x^2}{3^2}=\frac{1}{4}\Rightarrow x=\sqrt{3^2.\frac{1}{4}}=\frac{3}{2}\)
\(\frac{y^2}{5^2}=\frac{1}{4}\Rightarrow y=\sqrt{5^2.\frac{1}{4}}=\frac{5}{2}\)
bài nào bạn
mình sẽ giải toan giúp cậu