Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{x^3}{y+2z}+\dfrac{y^3}{z+2x}+\dfrac{z^3}{x+2y}=\dfrac{x^4}{xy+2zx}+\dfrac{y^4}{yz+2xy}+\dfrac{z^4}{zx+2yz}\)
\(\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{xy+2zx+yz+2xy+zx+2yz}=\dfrac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\)
Mà ta lại có: \(xy+yz+zx\le x^2+y^2+z^2\)
\(\Rightarrow\dfrac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{3\left(x^2+y^2+z^2\right)}=\dfrac{1^2}{3.1}=\dfrac{1}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\dfrac{1}{\sqrt{3}}\)
Ta có: \(x+y\ge2\sqrt{xy}\Rightarrow3xy\ge2\sqrt{xy}+1\Rightarrow3xy-2\sqrt{xy}-1\ge0\)
\(\Rightarrow\left(3\sqrt{xy}+1\right)\left(\sqrt{xy}-1\right)\ge0\Rightarrow\sqrt{xy}-1\ge0\) (do \(3\sqrt{xy}+1>0\) )
\(\Rightarrow\sqrt{xy}\ge1\Rightarrow xy\ge1\Rightarrow1-xy\le0\)
\(P=\dfrac{y\left(x+1\right)+x\left(y+1\right)}{xy\left(x+1\right)\left(y+1\right)}=\dfrac{2xy+x+y}{xy\left(xy+x+y+1\right)}\)
\(\Rightarrow P=\dfrac{2xy+3xy-1}{xy\left(xy+3xy\right)}=\dfrac{5xy-1}{4\left(xy\right)^2}=\dfrac{-4\left(xy\right)^2+5xy-1}{4\left(xy\right)^2}+1\)
\(\Rightarrow P=\dfrac{\left(1-xy\right)\left(4xy+1\right)}{4\left(xy\right)^2}+1\)
Do \(\left\{{}\begin{matrix}1-xy\le0\\4xy+1>0\\4\left(xy\right)^2>0\end{matrix}\right.\) \(\Rightarrow\dfrac{\left(1-xy\right)\left(4xy+1\right)}{4\left(xy\right)^2}\le0\)
\(\Rightarrow P\le0+1=1\Rightarrow P_{max}=1\) khi \(x=y=1\)
\(3xy=x+y+1\ge3\sqrt[3]{xy}\Rightarrow xy\ge1\)
\(4xy=xy+x+y+1=x\left(y+1\right)+\left(y+1\right)=\left(x+1\right)\left(y+1\right)\)
\(P=\frac{1}{x\left(y+1\right)}+\frac{1}{y\left(x+1\right)}=\frac{2xy+x+y}{4\left(xy\right)^2}=\frac{5xy-1}{4\left(xy\right)^2}\)
Xét hiệu: \(P-1=\frac{5xy-1}{4x^2y^2}-1=\frac{\left(4xy-1\right)\left(1-xy\right)}{4x^2y^2}\le0\) với mọi \(xy\ge1\)
Vậy \(P\le1\)hay max P = 1.
Dẫu "=" xảy ra <=> x = y = 1.
Áp dụng BĐT Cauchy ta có: \(3xy\ge2\sqrt{xy}+1\Leftrightarrow xy\ge1\)
Áp dụng BĐT Cauchy ta có:
\(P=\frac{1}{x\left(y+1\right)}+\frac{1}{y\left(x+1\right)}=\frac{5xy-1}{xy\left(x+1\right)\left(y+1\right)}=\frac{5xy-1}{4\left(xy\right)^2}\), đặt t=\(\frac{1}{xy}\)
\(f\left(t\right)=\frac{5}{4}t-\frac{1}{4}t^2\)đồng biến trên (0;1] nên f(t) đạt GTLN tại t=1
Vậy GTKN của P=1 đạt được khi x=y=1
1, Đúng
2, Sai ( VD \(\sqrt{3^2}⋮3\) nhưng \(\sqrt{3}⋮̸3\))
-----------HẾT----------------
1/ Giả sử n là số chẵn : 2k
\(\Rightarrow n^2=4k^2\)
Mà 4k2 chẵn (trái vs gt)
=> đpcm
2/Giả sử \(n⋮̸\) 3
\(\Rightarrow n.n⋮̸\) 3
\(\Leftrightarrow n^2⋮̸\) 3(trái gt)
=> đpcm
3/ Giả sử \(a+b< 2\sqrt{ab}\Leftrightarrow a-2\sqrt{ab}+b< 0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2< 0\) (vô lí)
=> đpcm
4/ Giả sử \(x\ne0\Rightarrow x^2\ne0;y\ne0\Rightarrow y^2\ne0\)
\(\Rightarrow x^2+y^2\ne0\) (trái gt)
=> đpcm
Câu 5 bn xem lại đề bài nhé vì nếu x=y=-2 thì x+y+xy= 0\(\ne-1\)
6/ Gọi 2 số thực là a và b
Giả sử \(a=1;b=1\Rightarrow a+b=2\) (trái gt)
=> đpcm
ko thì bn giả sử \(a< 1;b< 1\Rightarrow a+b< 2\) (trái gt) cũng đc
P/s: mk ms hok dạng này nên có sai sót j xin rộng lượng bỏ qua. Đa tạ!