Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án là C
Số cách chọn 2 số chẵn trong tập hợp 2 ; 4 ; 6 ; 8 là: C 4 2 cách.
Số cách chọn 2 số lẻ trong tập hợp 1 ; 3 ; 5 ; 7 ; 9 là: C 5 2 cách.
Số cách hoán vị 4 chữ số đã chọn lập thành 1 số tự nhiên là: 4! cách.
Vậy có 4 ! . C 4 2 . C 5 2 số tự nhiên thỏa mãn yêu cầu bài toán.
\(\overline{abcde}\).
- TH1 : a là số chẵn ⇒ Giả sử b,c là số chẵn và d,e là số lẻ
+ Chọn số cho a có 4 cách (2 ; 4 ; 6 ; 8) : Lưu ý là chữ số đầu tiên của số có từ 2 chữ số trở nên không được là số 0
+ Chọn số cho b có 3 cách
+ Chọn số cho c có 2 cách
+ Chọn số cho d có 5 cách
+ Chọn số cho e có 4 cách
⇒ Nếu a là số chẵn thì sẽ có 4 . 3 . 2 . 5 . 4 = 480 số
- Nếu a là số lẻ, giả sử b là số lẻ và c,d,e là số chẵn
+ Chọn số cho a có 5 cách
+ Chọn số cho b có 4 cách
+ Chọn số cho c có 5 cách
+ Chọn số cho d có 4 cách
Chọn số cho e có 3 cách
Vậy khi a là số lẻ thì có 5 . 4 . 5 . 4 . 3 = 1200 (số)
Vậy rốt cuộc là có 1200 + 480 = 1680 (số)
Chọn A
Tập hợp các chữ số chẵn chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {0,2,4,6}.
Tập hợp các chữ số lẻ chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {1,3,5,7}
+ Số các tự nhiên có 5 chữ số đôi một khác nhau thỏa đề có dạng a b c d e ¯ (a có thể bằng 0), đồng thời ba chữ số chẵn đứng liền nhau, hai chữ số lẻ đứng liền nhau là
(để ý: có 2 cách xếp 3 chữ số chẵn thỏa đề {a,b,c}, {c,d,e})
+ Số các tự nhiên có 5 chữ số đôi một khác nhau thỏa đề có dạng 0 b c d e ¯ , đồng thời ba chữ số chẵn đứng liền nhau, hai chữ số lẻ đứng liền nhau là
(để ý: có 1 cách xếp sao cho hai chữ số chẵn còn lại đứng liền với số 0 là {b,c}).
Suy ra, số các số tự nhiên thỏa đề ra là
Số tự nhiên chẵn gồm 5 chữ số khác nhau và đúng hai chữ số lẻ có:
· Chọn 2 chữ số lẻ có cach; chọn 3 chữ số chẵn có cách
· Gọi số có 5 chữ số thỏa mãn đề bài là .
· Nếu a5 = 0 thì có 4! Cách chọn .
· Nếu a5 ≠ 0 thì có 2 cách chọn a5 từ 3 số chẵn đã chọn; khi đó có 3 cách chọn a1 ; 3 cách chọn a2 ; 2 cách chọn a3 và 1 cách chọn a1 .
· Theo quy tắc cộng và nhân có 10.10.(1.4!+2.3.3.2.1)=6000 số
Số tự nhiên chẵn gồm 5 chữ số khác nhau và có đúng hai chữ số lẻ đứng cạnh nhau có số.
Suy ra có 6000-3120=2880 số cần tìm.
Chọn D.
Chọn 2 số lẻ từ 5 chữ số lẻ: \(C_5^2\)
Chọn 3 chữ số chẵn từ 5 chữ số chẵn: \(C_5^3\)
Xếp 8 chữ số theo thứ tự bất kì: \(C_5^2.C_5^3.\dfrac{8!}{2!.2!.2!}\)
Chọn 3 chữ số chẵn từ 5 chữ số chẵn trong đó có mặt số 0: \(C_4^2\)
Xếp 8 chữ số (có mặt số 0) sao cho số 0 đứng đầu: \(C_5^2C_4^2.\dfrac{7!}{2!.2!}\)
Số số thỏa mãn: \(C_5^2C_5^2\dfrac{8!}{2!.2!.2!}-C_5^2C_4^2.\dfrac{7!}{2!.2!}=...\)
Đưa các chữ số của số tự nhiên cần lập vào các ô trống:
. | . | . | . | . | . | . | . |
TH1: Có chữ số 0:
Đưa 0 vào : \(C^2_7\) cách
Chọn và đưa 2 số chẵn còn lại vào : \(C^2_4C^2_6C^2_4\) cách
Chọn 2 chữ số lẻ : \(A^2_5\) cách
=>TH1 lập được \(C^2_7C^2_4C^2_6C^2_4A^2_5=226800\) số
TH2: Không có chữ số 0:
Chọn và đưa 3 số chẵn vào : \(C^3_4C^2_8C^2_6C^2_4\) cách
Chọn 2 chữ số lẻ : \(A^2_5\) cách
=>TH2 lập được \(C^3_4C^2_8C^2_6C^2_4A^2_5=201600\) số
Vậy có 226800 + 201600 = 428400 số
Chọn C
Tập hợp các chữ số chẵn chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {0,2,4,6}.
Tập hợp các chữ số lẻ chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {1,3,5,7}
+ Số các số tự nhiên có 5 chữ số đôi một khác nhau thỏa đề có dạng a b c d e ¯ (a có thể bằng 0), có đúng 3 chữ số chẵn và 2 chữ số lẻ, đồng thời ba chữ số chẵn và hai chữ số lẻ đứng xen kẽ là
(để ý: có 1 cách xếp 3 chữ số chẵn thỏa đề {a,c,e}).
+ Số các số tự nhiên có 5 chữ số đôi một khác nhau thỏa đề có dạng 0 b c d e ¯ , có đúng 3 chữ số chẵn và 2 chữ số lẻ, đồng thời ba chữ số chẵn và hai chữ số lẻ đứng xen kẽ là
(để ý: có 1 cách xếp 3 chữ số chẵn thỏa đề {0,c,e}).
Suy ra, số các số tự nhiên thỏa đề ra là