Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Số các số lẻ có 4 chữ số
Chữ số hàng đơn vị có 3 cách chọn
chữ số hàng nghìn có 4 cách chọn
chữ số hàng trăm và hàng chục có lần lượt 4 và 3 cách chọn
Do đó có: 3.4.4.3 = 144 số
Số các số lẻ có 4 chữ số và không có chữ số 3 là
2.3.2.3 = 36
Vậy có 144 - 36 = 108 số
Đáp án B
Xét các số lẻ có 4 chữ số được lập từ các số trên có: 3.4.4.3 = 144 số
Xét các số lẻ có 4 chữ số được lập từ 4 số trên và không có mặt chữ số 3 có: 2.3.3.2 = 36 số
Do đó có 144 - 36 = 108 thỏa mãn.
Đáp án A
Gọi a 1 a 2 a 3 a 4 ¯ là số lẻ có 4 chữ số khác nhau, với a 1 , a 2 , a 3 , a 4 ∈ { 0 , 1 , 2 , 3 , 5 , 8 } => a4 có 3 cách chọn, a1 có 4 cách chọn, a2 có 4 cách chọn và a3 có 3 cách chọn. Khi đó, có 3.4.4.3 = 144 số thỏa mãn yêu cầu trên.
Gọi b 1 b 2 b 3 b 4 là số lẻ có 4 chữ số khác nhau, với b 1 , b 2 , b 3 , b 4 ∈ 0 ; 1 ; 2 ; 5 ; 8 => b4có 2 cách chọn, b1 có 3 cách chọn, b2 có 3 cách chọn và b3 có 2 cách chọn. Do đó, có 2.3.3.2 = 36 số thỏa mãn yêu cầu trên.
Vậy có tất cả 144 - 36 = 108 số thỏa mãn yêu cầu bài toán.
Đáp án A
Trước tiên ta đếm số các số lẻ có bốn chữ số đôi một khác nhau lập được từ các số đã cho: có 3 cách chọn chữ số hàng đơn vị, có 4 cách chọn chữ số hàng nghìn, có . 2 cách chọn hai chữ số hàng trăm và hàng chục. Như vậy có 3.4.6.2=144 số như trên.
Tiếp theo ta đếm số các số lẻ có bốn chữ số đôi một khác nhau và không có mặt chữ số 1: Tương tự trường hợp trên, ta được số các số thuộc loại này là: 2.3.3=18.
Vậy số các số tự nhiên lẻ có bốn chữ số đôi một khác nhau mà phải có mặt số 1 là: 144-18= 126
Chọn D
*) Ta có:
*) Tính n(A): Giả sử 8 chữ số được viết vào 8 ô trống được đánh số từ 1 đến 8
TH1: Xếp bất kỳ
Xếp hai chữ số 1, hai chữ số 2 và 4 chữ số còn lại: Có (cách).
TH2: Số các cách xếp sao cho không thỏa mãn yêu cầu bài toán
Xếp hai chữ số 1 đứng liền nhau: Có cách.
Xếp hai chữ số 2 đứng liền nhau: Có cách.
Số các cách xếp thuộc cả hai trường hợp trên:
+ Coi hai chữ số 1đứng liền nhau là nhóm X, hai chữ số 2 đứng liền nhau là nhóm Y
+ Xếp X, Y và 4 số còn lại có: (cách)
Vậy số cách xếp không thỏa mãn yêu cầu là: (cách)
Vậy
Chọn B
Gọi số cần tìm là : a 5 chẵn và trong số luôn có mặt số 0.
Số cần tìm được chọn từ một trong các trường hợp :
Trường hợp 1 : a 5 = 0 có 5 cách chọn.
Khi đó cách chọn. Suy ra có : A 9 4 (số).
Trường hợp 2 : có 4 cách chọn.
Chữ số 0 có 3 cách chọn vị trí cách chọn 3 số cho 3 vị trí còn lại.
Suy ra có : 4.3. A 8 3 (số).
Vậy ta có thỏa mãn yêu cầu bài toán.
Chọn 5 chữ số còn lại từ 6 chữ số 0,1,2,3,8,9 có \(C_6^5\) cách
Xếp thứ tự 5 chữ số ở trên: \(5!\) cách
5 chữ số trên tạo thành 6 khe trống, xếp 4 chữ số 4,5,6,7 vào 6 khe trống đó: \(A_6^4\) cách
\(\Rightarrow C_6^5.5!.C_6^4\) số (bao gồm cả trường hợp số 0 đứng đầu)
Chọn 5 chữ số sao cho có mặt chữ số 0: \(C_5^4\) cách
Xếp 5 chữ số đó sao cho số 0 đứng đầu: 4! cách (hoán vị 4 chữ số còn lại)
4 chữ số tạo thành 5 khe trống, xếp 4,5,6,7 vào 5 khe trống: \(A_5^4\) cách
Vậy số số thỏa mãn là: \(C_6^5.5!.A_6^4-C_5^4.4!.A_5^4\) số