Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án A.
Cách 1: Lấy 4 chữ số khác nhau từ tập S rồi sắp xếp theo một thứ tự nào đó ta được một số tự nhiên.
Vậy số tự nhiên gồm 4 chữ số khác nhau lấy từ tập hợp S là một chỉnh hợp chập 4 của S.
Do đó số các số tự nhiên gồm 4 chữ số khác nhau lấy từ tập hợp S là A 6 4 = 360 (số).
Cách 2: Có 6 cách chọn chữ số hàng nghìn.
Khi đó có 5 cách chọn chữ số hàng trăm.
Khi đã chọn xong chữ số hàng nghìn và chữ số hàng tram thì có 44 cách chọn chữ số hàng chục
Cuốin ùng, khi đã chọn xong chữ số hang nghìn, hằng trăm, hàng chục thì còn 3 cách chọn chữ số hàng đơn vị.
Vậy các số tự nhiên gồm 4 chữ số khác nhau lấy từ tập hợp S là 6.5.4.3 = 360 (số).
Đáp án A
Tập 1 ; 2 ; 3 ; 4 ; 5 ; 6 có 6 số và tạo thành có 5 vị trí. Mỗi số có 5 chữ số tạo thành một chỉnh hợp chập 5 của 6 chữ số trên A 6 5 = 720
Trong 720 số đó mỗi vị trí (hàng chục nghìn, nghìn, trăm, chục, đơn vị) mỗi chữ số 1, 2, 3, 4, 5, 6 có mặt 720 6 = 120 lần. Tổng các chữ số 1 + 2 + 3 + 4 + 5 + 6 = 21 .
Vậy tổng của 720 số tạo thành là 120.21.11111 = 27999720
Đáp án D
Chọn 3 số từ 6 số có C 6 3 cách, hoán vị 3 số này có 3! Cách
Do đó có C 6 3 3 ! = 120 số thỏa mãn
Đáp án C
Số các số tự nhiên thỏa mãn yêu cầu bài toán là: A 6 4 = 360 số
Đáp án D
Số các số thỏa mãn đề bài là A = 6 3 120.