K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2021

<=>(4m+5-3)x=6m+3

<=>(4m+2)x - (6m+3)=0

Để pt có nghiệm duy nhất khi 4m+2 \(\ne\) 0 <=> m\(\ne\) -1/2

=>B

29 tháng 11 2021

-6 = 5.(-1) - 1

--> B

AH
Akai Haruma
Giáo viên
28 tháng 8 2021

Thực sự mình cũng không hiểu cách giải theo hướng dẫn bạn trích ở trên. Nhưng bạn có thể như sau:

\(\frac{a}{b^2}+\frac{4b}{a^2+b^2}=\frac{2a}{1-a^2}+\frac{4b}{1-b^2}=\frac{2a^2}{a(1-a^2)}+\frac{4b^2}{b(1-b^2)}\)

Áp dụng BĐT AM-GM:
\(2a^2(1-a^2)^2=2a^2(1-a^2)(1-a^2)\leq \left(\frac{2a^2+1-a^2+1-a^2}{3}\right)^3=\frac{8}{27}\)

$\Rightarrow a(1-a^2)\leq \frac{2}{3\sqrt{3}}$

$\Rightarrow \frac{2a^2}{a(1-a^2)}\geq 3\sqrt{3}a^2$

Tương tự: $\frac{4b^2}{b(1-b^2)}\geq 6\sqrt{3}b^2$

Do đó: $\frac{a}{b^2}+\frac{4b}{a^2+b^2}\geq 3\sqrt{3}(a^2+2b^2)=3\sqrt{3}$ (đpcm)

 

AH
Akai Haruma
Giáo viên
28 tháng 8 2021

Bài toán này xuất phát từ bài toán quen thuộc:

Cho $a,b,c>0$ thỏa mãn $a^2+b^2+c^2=1$. CMR:

$\frac{a}{b^2+c^2}+\frac{b}{a^2+c^2}+\frac{c}{a^2+b^2}\geq \frac{3\sqrt{3}}{2}$

17 tháng 12 2021

Câu 58: B

Câu 59: C

NV
2 tháng 12 2021

Gọi \(D\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-3;-1\right)\\\overrightarrow{DC}=\left(5-x;1-y\right)\end{matrix}\right.\)

ABCD là hình bình hành \(\Rightarrow\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Rightarrow\left\{{}\begin{matrix}5-x=-3\\1-y=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=8\\y=2\end{matrix}\right.\)

\(\Rightarrow D\left(8;2\right)\)

2 tháng 12 2021

Em cảm ơn ạ

a: Để phương trình có nghiệm duy nhất thì \(\left(m-3\right)\left(m+2\right)< >0\)

hay \(m\notin\left\{3;-2\right\}\)

Để phương trình vô nghiệm thì \(\left\{{}\begin{matrix}\left(m-3\right)\left(m+2\right)=0\\\left(m-3\right)\left(m-1\right)< >0\end{matrix}\right.\Leftrightarrow m=-2\)

Để phương trình có vô số nghiệm thì m=3

6 tháng 12 2021

Em cảm ơn ạ

\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=2\cdot\left(\overrightarrow{OE}+\overrightarrow{OF}\right)=\overrightarrow{0}\)

6 tháng 12 2021

Em cảm ơn ạ