Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta sẽ tìm ước chung của chúng
Gọi d là UCLN của 5n+6 và 8n+7
\(\Rightarrow\hept{\begin{cases}5n+6⋮d\\8n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}40n+48⋮d\\40n+35⋮d\end{cases}}\)
\(\Rightarrow\left(40n+48\right)-\left(40n+35\right)⋮d\Rightarrow13⋮d\)
Vậy có thể rút gọn là +-1;+-13
Gọi ƯC(5n+6; 8n+7) là d. Ta có:
5n+6\(_:^.\)d =>40n+48 \(^._:\)d
8n+7\(^._:\)d =>40n+35 \(^._:\)d
=>40n+48-(40n+35) \(^._:\)d
=>13\(^._:\)d
=>d\(\in\)Ư(13)
=>d\(\in\){1; -1; 13; -13}
=>Có thể rút gọn \(\frac{5n+6}{8n+7}\)cho 1; -1; 13; -13
Gọi d là ƯC ( 5n+6; 8n+7 )
⇒ 5n+6 ⋮ d ⇒ 40n+48 ⋮ d
⇒ 8n+7 ⋮ d ⇒ 40n+35 ⋮ d
⇒ [ ( 40n+48 ) - ( 40n+35 ) ] ⋮ d
⇒ 13 ⋮ d ⇒ d ∈ Ư ( 13 ) = { + 1 ; + 13 }
Có thể dút gọn \(^{\frac{5n+6}{8n+7}}\) cho 1; - 1; 13; - 13
gỌI ƯCLN(5N+6;8n+7)là d
13chia hết cho d nên d bằng 1; -1 ;13; -13
Vậy có thể rút gọn cho những số trên
http://olm.vn/hoi-dap/question/105053.html
Mình sửa lại phần kết luân của bạn Giang là:
Chỉ có thể rút gọn Phân số trên cho 13 hoặc -13.