K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
HP
30 tháng 3 2016
\(A=\frac{2+4+6+...+2m}{m}=\frac{\left(2+2m\right).m}{2m}=\frac{2\left(1+m\right).m}{2m}=m+1\)
\(B=\frac{2+4+6+....+2n}{n}=\frac{\left(2+2n\right).n}{2n}=\frac{2\left(1+n\right).n}{2n}=n+1\)
Mà A>B=>m+1>n+1=>m>n
Vậy m>n
NN
Nguyễn Ngọc Anh Minh
CTVHS
VIP
22 tháng 10 2021
\(A=\frac{\frac{m\left(2+2m\right)}{2}}{m}=1+m\)
\(B=\frac{\frac{n\left(2+2n\right)}{2}}{n}=1+n\)
\(A< B\Rightarrow1+m< 1+n\Rightarrow m< n\)
Bài giải
Ta có : 2 + 4 + 6 + ... + 2m = [ ( 2m - 2 ) : 2 + 1 ] x ( 2m + 2 ) : 2 = m x ( m + 1 )
Thay vào A ta có : \(\frac{m\left(m+1\right)}{m}=m+1\)
Ta có : 2 + 4 + 6 + ... + 2n = [ ( 2n - 2 ) : 2 + 1 ] x ( 2n + 2 ) : 2 = n x ( n + 1 )
Thay vào B ta có : \(\frac{n\left(n+1\right)}{n}=n+1\)
Mà A < B nên \(m+1< n+1\text{ }\Rightarrow\text{ }m< n\)