K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2023

Ta có:

\(x^2+4y^2+z^2-4x+4y-8z+24=0\)

\(\Leftrightarrow x^2-4x+4+4y^2+4y+1+z^2-8z+16+3=0\)

\(\Leftrightarrow\left(x^2-4x+4\right)+\left(4y^2+4y+1\right)+\left(z^2-8z+16\right)+3=0\)

\(\Leftrightarrow\left(x-2\right)^2+\left(2y+1\right)^2+\left(z-4\right)^2+3=0\)

Mà: \(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\\\left(2y+1\right)^2\ge0\\\left(z-4\right)^2\ge0\end{matrix}\right.\)

 \(\Rightarrow\left(x-2\right)^2+\left(2y+1\right)^2+\left(z-4\right)^2+3\ge3\ne0\)

Vậy không có số thực x, y, z nào thỏa mãn đẳng thức.

19 tháng 7 2021

Do x;y có vai trò tương đương nhau nên ko giảm tính tổng quát của bài toán, ta giả sử:x>= y
Suy ra: x^2<x^2+y=<x^2+x<(x+1)^2 mà x;y nguyên dương => x^2+y không phải là scp.
        Vậy không tồn tại 2 số x;y sao cho x^2+y; y^2+x