K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Ta có: \(A=\dfrac{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1}{x^2+5x+5}\)

\(=\dfrac{\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1}{x^2+5x+5}\)

\(=\dfrac{\left(x^2+5x+5\right)^2}{x^2+5x+5}\)

\(=x^2+5x+5\)

Đề sai rồi bạn

Đăng 5 -6 câu từng lần ha bạn!

7 tháng 2 2022

\(1,7x-8=4x+7\)

\(\Leftrightarrow7x-8-4x=7\)

\(\Leftrightarrow7x-4x=7+8\)

\(\Leftrightarrow3x=15\)

\(\Rightarrow x=5\)

\(2,3-2x=3\left(x+1\right)-x-2\)

\(\Leftrightarrow3-2x=2x+1\)

\(\Leftrightarrow-2x+3=2x+1\)

\(\Leftrightarrow-2x-2x=1-3\)

\(\Leftrightarrow-4x=-2\)

\(\Rightarrow x=\dfrac{1}{2}\)

\(3,5\left(3x+2\right)=4x+1\)

\(\Leftrightarrow5.3x+5.2=4x+1\)

\(\Leftrightarrow15x+10=4x+1\)

\(\Leftrightarrow15x-4x=1-10\)

\(\Leftrightarrow11x=-9\)

\(\Rightarrow x=\dfrac{-9}{11}\)

19 tháng 12 2023

a: \(VP=a^3+b^3+c^3-3bac\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=VT\)

b: \(VT=\left(3a+2b-1\right)\left(a+5\right)-2b\left(a-2\right)\)

\(=3a^2+15a+2ab+10b-a-5-2ab+4b\)

\(=3a^2+14a+14b-5\)

\(VP=\left(3a+5\right)\left(a+3\right)+2\left(7b-10\right)\)

\(=3a^2+9a+5a+15+14b-20\)

\(=3a^2+14a+14b-5\)

=>VT=VP

c: \(VT=a\left(b-x\right)+x\left(a+b\right)\)

\(=ab-ax+ax+bx\)

\(=ab+bx=b\left(a+x\right)=VP\)

d: \(VT=a\left(b-c\right)-b\left(a+c\right)+c\left(a-b\right)\)

\(=ab-ac-ab-bc+ca-cb\)

\(=-2bc\)

=VP

30 tháng 9 2021

1) \(x^3+y^3+z^3-3xyz=\left(x^3+3x^2y+3xy^2+y^3\right)+z^3-3xyz-3x^2y-3xy^2=\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)

2) Ta có: \(\left(a+b+c\right)^2=a^2+b^2+c^2\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=a^2+b^2+c^2\)

\(\Leftrightarrow ab+bc+ac=0\)

\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)

\(\Leftrightarrow\dfrac{a^3b^3+b^3c^3+a^3c^3}{a^3b^3c^3}=\dfrac{3}{abc}\)

\(\Leftrightarrow\dfrac{a^3b^3+b^3c^3+a^3c^3}{a^2b^2c^2}=3\)

\(\Leftrightarrow a^3b^3+b^3c^3+a^3c^3=3a^2b^3c^2\)

\(\Leftrightarrow\left(ab+bc\right)^3-3ab^2c\left(ab+bc\right)+a^3b^3-3a^2b^2c^2=0\)

\(\Leftrightarrow\left(ab+bc+ac\right)\left[\left(ab+bc\right)^2-\left(ab+bc\right)ac+a^2c^2\right]-3ab^2c\left(ab+bc+ac\right)=0\)

\(\Leftrightarrow0+0=0\left(đúng\right)\)

30 tháng 9 2021

e cảm ơn ạ

4 tháng 3 2022

a.

Ta có: MN//BC (gt)

Áp dụng định lý Ta-lét, ta có:

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

\(\Leftrightarrow\dfrac{1,2}{3}=\dfrac{AN}{4}\)

\(\Leftrightarrow3AN=4,8\)

\(\Leftrightarrow AN=1,6cm\)

b.Áp dụng định lý pitago vào tam giác vuông ABC, có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC=\sqrt{3^2+4^2}=\sqrt{25}=5cm\)

Áp dụng t/c đường phân giác góc A, ta có:

\(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)

\(\Leftrightarrow\dfrac{3}{4}=\dfrac{BD}{CD}\)

\(\Leftrightarrow\dfrac{CD}{4}=\dfrac{BD}{3}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\dfrac{CD}{4}=\dfrac{BD}{3}=\dfrac{CD+BD}{4+3}=\dfrac{5}{7}\)

\(\Rightarrow CD=\dfrac{5}{7}.4=\dfrac{20}{7}cm\)

\(\Rightarrow BD=\dfrac{5}{7}.3=\dfrac{15}{7}cm\)

a: Xét tứ giác MIPC có

K là trung điểm của MP

K là trung điểm của IC

Do đó: MIPC là hình bình hành

mà MI=PI

nên MIPC là hình thoi

21 tháng 11 2023

a: Xét ΔHAC vuông tại H và ΔABC vuông tại A có

\(\widehat{C}\) chung

Do đó: ΔHAC~ΔABC

b: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=15^2+20^2=625\)

=>BC=25

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}BH\cdot BC=BA^2\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH\cdot25=15^2=225\\AH\cdot25=15\cdot20=300\end{matrix}\right.\)

=>BH=9; AH=12