K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2021

Câu 6: 

a: Xét (O) có

AB là tiếp tuyến

AC là tiếp tuyến

Do đó: AB=AC

hay A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

29 tháng 12 2021

Tính AH 

SinC= AH/AC= x/12

=>x = AC. Sin30 độ = 12. Sin30 độ =6 cm

=>x= AH =6(cm)

Tính AB

CosA=AH/AB=6/y

=>y= AH:Cos40 độ = 6:Cos40 độ = 7,832 cm

=>y=AB=7,832 cm

a: góc OBA+góc OCA=180 độ

=>ABOC nội tiếp

b: Xét ΔABE và ΔADB có

góc ABE=góc ADB

góc BAE chung

=>ΔABE đồng dạng với ΔADB

=>AB/AD=AE/AB

=>AB^2=AD*AE

NV
8 tháng 2 2022

5.

\(\Delta=\left(-2\right)^2-4\left(-15\right)=64\)

6.

\(\Delta'=2^2-5.\left(-7\right)=39\)

8 tháng 2 2022

Mà thầy ơi em hok hiểu khúc đầu làm sao để ra cái đó ròi ra kết quả á :((( cả 2 câu lun 

28 tháng 6 2021

Giúp em giải với huhu 

\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{3}y=\dfrac{7}{3}\\x-\dfrac{1}{2}y=-\dfrac{1}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{6}y=\dfrac{5}{2}\\x+\dfrac{1}{3}y=\dfrac{7}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=\dfrac{4}{3}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
27 tháng 2 2022

Lời giải:

Lấy PT(1) trừ PT(2) theo vế:

$\frac{y}{3}+\frac{y}{2}=\frac{7}{3}+\frac{1}{6}$

$\Leftrightarrow \frac{5}{6}y=\frac{5}{2}$
$\Leftrightarrow y=3$

$x=\frac{7}{3}-\frac{y}{3}=\frac{7}{3}-1=\frac{4}{3}$

b: \(B=\sqrt{\left(2\sqrt{5}-5\right)^2}+\sqrt{29-12\sqrt{5}}\)

\(=\sqrt{\left(5-2\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{5}-3\right)^2}\)

\(=\left|5-2\sqrt{5}\right|+\left|2\sqrt{5}-3\right|\)

\(=5-2\sqrt{5}+2\sqrt{5}-3=2\)

c: \(C=\dfrac{6}{\sqrt{7}-1}-14\sqrt{\dfrac{1}{7}}+\dfrac{\sqrt{21}+2\sqrt{7}}{2+\sqrt{3}}\)

\(=\dfrac{6\left(\sqrt{7}+1\right)}{7-1}-2\sqrt{7}+\dfrac{\sqrt{7}\left(2+\sqrt{3}\right)}{2+\sqrt{3}}\)

\(=\sqrt{7}+1-2\sqrt{7}+\sqrt{7}=1\)

23 tháng 10 2023

\(tana=\sqrt{3}\)

=>\(\dfrac{sina}{cosa}=\sqrt{3}\)

=>\(sina=\sqrt{3}\cdot cosa\)

\(1+tan^2a=\dfrac{1}{cos^2a}\)

=>\(\dfrac{1}{cos^2a}=1+3=4\)

=>\(cos^2a=\dfrac{1}{4}\)

=>\(cosa=\dfrac{1}{2}\)

=>\(sina=\dfrac{\sqrt{3}}{2}\)

\(A=\dfrac{sin^2a-cos^2a}{sina\cdot cosa}\)

\(=\dfrac{\dfrac{3}{4}-\dfrac{1}{4}}{\dfrac{\sqrt{3}}{2}\cdot\dfrac{1}{2}}=\dfrac{2}{4}:\dfrac{\sqrt{3}}{4}=\dfrac{2}{\sqrt{3}}=\dfrac{2\sqrt{3}}{3}\)

22 tháng 6 2018

Ta có: \(\hept{\begin{cases}\left(\frac{1}{x}+y\right)+\left(\frac{1}{x}-y\right)=\frac{5}{8}\\\left(\frac{1}{x}+y\right)-\left(\frac{1}{x}-y\right)=-\frac{3}{8}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{2}{x}=\frac{5}{8}\\2y=-\frac{3}{8}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{16}{5}\\y=-\frac{3}{16}\end{cases}}}\)