Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(9^{x-1}=\frac{1}{9}\)
=> \(9^{x-1}=9^{-1}\)
=> x - 1 = -1
=> x = 0
ko biết bạn học mũ âm chưa nêu chưa thì mk xin lỗi
=>
\(\sqrt{\left(x-3\sqrt{5}\right)^2}+\sqrt{\left(y+3\sqrt{5}\right)^2}+\left|x+y+z\right|=0\)
\(\Leftrightarrow\left|x-3\sqrt{5}\right|+\left|y+3\sqrt{5}\right|+\left|x+y+z\right|=0\)
\(\Leftrightarrow\begin{cases}x-3\sqrt{5}=0\\y+3\sqrt{5}=0\\x+y+z=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x=3\sqrt{5}\\y=-3\sqrt{5}\\z=-x-y=-3\sqrt{5}+3\sqrt{5}=0\end{cases}\)
Vì \(\sqrt{\left(x-\sqrt{2}\right)^2}=\left|x-\sqrt{2}\right|\ge0;\sqrt{\left(y+\sqrt{2}\right)^2}=\left|y+\sqrt{2}\right|\ge0\);|x+y+z|\(\ge\)0
=>\(\left|x-\sqrt{2}\right|+\left|y+\sqrt{2}\right|+\left|x+y+z\right|\ge0\)
Dấu "=" xảy ra khi \(\left|x-\sqrt{2}\right|=\left|y+\sqrt{2}\right|=\left|x+y+z\right|=0\)
\(\left|x-\sqrt{2}\right|=0\Leftrightarrow x-\sqrt{2}=0\Leftrightarrow x=\sqrt{2}\)
\(\left|y+\sqrt{2}\right|=0\Leftrightarrow y+\sqrt{2}=0\Leftrightarrow y=-\sqrt{2}\)
\(\left|x+y+z\right|=0\Leftrightarrow x+y+z=0\Leftrightarrow\sqrt{2}+\left(-\sqrt{2}\right)+z=0\Leftrightarrow z=0\)
Vậy ............
1) \(9^{x-1}=\dfrac{1}{9}\) (1)
\(\Leftrightarrow3^{2x-2}=3^{-2}\)
\(\Leftrightarrow2x-2=-2\)
\(\Leftrightarrow2x=0\)
\(\Leftrightarrow x=0\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{0\right\}\)
2) \(\dfrac{1}{3}:\sqrt{7-3x^2}=\dfrac{2}{15}\) (2)
\(\Leftrightarrow\dfrac{1}{3}\cdot\dfrac{1}{\sqrt{7-3x^2}}=\dfrac{2}{15}\)
\(\Leftrightarrow\dfrac{1}{3\sqrt{7-3x^2}}=\dfrac{2}{15}\)
\(\Leftrightarrow15=6\sqrt{7-3x^2}\)
\(\Leftrightarrow6\sqrt{7-3x^2}=15\)
\(\Leftrightarrow\sqrt{7-3x^2}=\dfrac{5}{2}\)
\(\Leftrightarrow7-3x^2=\dfrac{25}{4}\)
\(\Leftrightarrow-3x^2=\dfrac{25}{4}-7\)
\(\Leftrightarrow-3x^2=-\dfrac{3}{4}\)
\(\Leftrightarrow x^2=\dfrac{1}{4}\)
\(\Leftrightarrow x=\pm\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy tập nghiệm phương trình (2) là \(S=\left\{-\dfrac{1}{2};\dfrac{1}{2}\right\}\)
ối lắm thế :((
3.
a/ Giả sử đại lượng y tỉ lệ nghịch với đại lượng x theo hệ số tỉ lệ là k
=> y = k/x
Thay x = 8 ; y = 15 vào ct y = k/x ta có
\(\dfrac{k}{8}=15\Rightarrow k=120\)
Thay \(k=120\) vào ct \(y=\dfrac{k}{x}\) ta có
\(y=\dfrac{120}{x}\)
b/ Thay x = 6 vào ct \(y=\dfrac{120}{x}\) ta có
\(y=\dfrac{120}{6}=20\)
Thay x = - 10 vào ct \(y=\dfrac{120}{x}\) ta có
\(y=\dfrac{120}{-10}=-12\)
b/ Thay y = 2 vào ct \(y=\dfrac{120}{x}\) ta có
\(2=\dfrac{120}{x}\Rightarrow x=60\)
Thay y = - 30 vào ct \(y=\dfrac{120}{x}\) ta có
\(-30=\dfrac{120}{x}\Rightarrow x=-4\)
4/
a/ Giả sử đại lượng y tỉ lệ thuận với đại lượng x theo hệ số tỉ lệ là k
=> y = xk
Thay y = 4 ; x = 6 vào ct y = xk ta có
\(4=6k\Rightarrow k=\dfrac{2}{3}\)
Thay \(k=\dfrac{2}{3}\) vào ct y = xk ta có
\(y=\dfrac{2}{3}x\)
b/ Thay x = 9 vào ct \(y=\dfrac{2}{3}x\) ta có
\(y=\dfrac{2}{3}.9=6\)
Thay y = - 8 vào ct \(y=\dfrac{2}{3}x\) ta có
\(-8=\dfrac{2}{3}x\Rightarrow x=-12\)