K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2022

Ta có :

 \(VT=x\left(y-1\right)+3\left(y-1\right)=\left(y-1\right)\left(x+3\right)\)

\(VP=-\left(1-y\right)\left(x+3\right)=\left(y-1\right)\left(x+3\right)\)

\(\Rightarrow VT=VP\)

Vậy đẳng thức trên đúng

13 tháng 10 2022

(x+3) y-x+3=(4x+9)y-4x-9

-(4x+9) y+(x+3) y-x-(-4x)+12=0

-3((x-2) y-x-4)=0

(x+2) y-x-4=0

x+2=0

x=-2

y-1=0

y=1

Câu 1:

a) Ta có: \(VT=x^4-y^4\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)

\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)

\(=\left(x-y\right)\left(x^3+xy^2+x^2y+y^3\right)\)=VP(đpcm)

c) Ta có: \(VT=a\left(b+1\right)+b\left(a+1\right)\)

\(=ab+a+ab+b\)

\(=a+b+2ab\)(1)

Thay ab=1 vào biểu thức (1), ta được:

a+b+2(*)

Ta có: VP=(a+1)(b+1)=ab+a+b+1(2)

Thay ab=1 vào biểu thức (2), ta được:

1+a+b+1=a+b+2(**)

Từ (*) và (**) ta được VT=VP(đpcm)

Câu 2:

Ta có: \(\left(x-3\right)\left(x+x^2\right)+2\left(x-5\right)\left(x+1\right)-x^3=12\)

\(\Leftrightarrow x^2+x^3-3x-3x^2+2\left(x^2+x-5x-5\right)-x^3=12\)

\(\Leftrightarrow x^3-2x^2-3x+2x^2-8x-10-x^3-12=0\)

\(\Leftrightarrow-11x-22=0\)

\(\Leftrightarrow-11x=22\)

hay x=-2

Vậy: x=-2

Câu 5:B

Câu 4: C

Câu 3: D

Câu 2: A

Câu 1: A

20 tháng 6 2015

1)5(x^2-1)+x(1-5x)= x-2

<=>5x2-5+x-5x2=x-2

<=>-5+x=x-2

<=>x-x=-2+5

<=>0x=3(vô lí)

vậy ko tìm được x

 

 

20 tháng 6 2015

daj quá bạn đăng từng baj thuj

15 tháng 7 2017

a) \(VT=\left(x-1\right)\left(x^2+x+1\right)\)

\(=x^3+x^2+x-x^2-x-1\)

\(=x^3-1=VP\)

b) \(VT=\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)\)

\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)

\(=x^4-y^4=VP\)

c) \(VT=\left(x+y+z\right)^2\)

\(=\left(x+y\right)^2+2\left(x+y\right)z+z^2\)

\(=x^2+2xy+y^2+2xz+2yz+z^2\)

\(=x^2+y^2+z^2+2xy+2yz+2zx=VP\)

Chúc bạn học tốt.

AH
Akai Haruma
Giáo viên
1 tháng 12 2021

Lời giải:
1.

\(\frac{a^3-4a^2-a+4}{a^3-7a^2+14a-8}=\frac{a^2(a-4)-(a-4)}{(a^3-8)-(7a^2-14a)}=\frac{(a-4)(a^2-1)}{(a-2)(a^2+2a+4)-7a(a-2)}\)

\(=\frac{(a-4)(a-1)(a+1)}{(a-2)(a^2-5a+4)}=\frac{(a-4)(a-1)(a+1)}{(a-2)(a-1)(a-4)}=\frac{a+1}{a-2}\)

2.

\(\frac{x^2y^2+1+(x^2-y)(1-y)}{x^2y^2+1+(x^2+y)(1+y)}=\frac{x^2y^2+1+x^2-x^2y-y+y^2}{x^2y^2+1+x^2+x^2y+y+y^2}\)

\(=\frac{(x^2y^2-x^2y+x^2)+(y^2-y+1)}{(x^2y^2+x^2y+x^2)+(y^2+y+1)}\)

\(=\frac{x^2(y^2-y+1)+(y^2-y+1)}{x^2(y^2+y+1)+(y^2+y+1)}=\frac{(x^2+1)(y^2-y+1)}{(x^2+1)(y^2+y+1)}=\frac{y^2-y+1}{y^2+y+1}\)

22 tháng 6 2021

Trả lời:

Sửa đề: ( x + y ) ( x3 - x2y + xy2 + y3 ) = x4 + y4 

Ta có: ( x + y ) ( x3 - x2y + xy2 + y3 ) = x4 - x3y + x2y2 + xy3 + x3y - x2y2 + xy3 + y4 = x+ y4  (đpcm)

AH
Akai Haruma
Giáo viên
15 tháng 8 2021

Lời giải:

a.

$27A=x^3-9x^2+162x-27=(x-3)^3+135x$

$=(303-3)^3+135.303=27040905$

$A=1001515$

b.

$B=2[(x+y)^3-3xy(x+y)]-3[(x+y)^2-2xy]$

$=2(1-3xy)-3(1-2xy)=2-6xy-3+6xy=-1$

c.

$C=x^3+y^3+3xy(x+y)=(x+y)^3=1^3=1$