Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
4 . abc = 400a + 40b + 4c = 399a + 42b + a - 2b + 4c
= 21 ( 19a + 2b ) + ( a - 2b + 4c ) chia hết cho 21
( Do 21 chia hết cho 21 và a - 2b + 4c chia hết cho 21 )
=> 400a + 40b + 4c chia hết cho 21
=> 4 ( 100a + 10b + c ) chia hết cho 21
=> 100a + 10b + c chia hết cho 21
=> abc chia hết cho 21
Vậy nếu a-2b+4c chia hết cho 21 thì abc chia hết cho 21
Ta có
abcd = ab.100 + cd
= ab.99 + ab + cd
= ab.99 + (ab + cd)
Do ab.99= ab.9.11 chia hết cho 11 và theo bài ra ta có ab + cd chia hết cho 11
nên ab.99 + (ab + cd) chia hết cho 11
Vậy abcd chia hết cho 11
\(abc=100a+10b+c\)chia hết cho 21
\(\Rightarrow\left(100a-99a\right)+\left(10b-6b\right)+\left(c+3c\right)\)chia hết cho 21
Hay \(a+2b+4c\)chia hết cho 21
Ta có:
abcd=1000a+100b+10c+d=986a+87b+14a+13b+10c+d=29.(34a+3b)+(14a+13b+10c+d)
=>14a+13b+10c+d chia hết cho 29
ta lại có
a+3b+9c+27d=29.(a+b+c+d)-(28a+26b+20c+2d)=29(a+b+c+d)-2(14a+13b+10c+d)
vì 29(a+b+c+d) chia hết cho 29 và 2(14a+13b+10c+d) cũng chia hết cho 29
=>a+3b+9c+27d chia hết cho 29 (ĐPCM)
ý đàu tiên:
ta có: \(\overline{ba}-\overline{ab}\)=10b+a-10a-b=9b-9a=9(b-a) chia hết cho 9
Ta có:ab=10a.b
ba=10b.a
ab+ba=10a.b+10b.a
= 11a + 11b
Ta thấy: 11a⋮11 ; 11b⋮11
=>ab+ba⋮11 (ĐPCM)
a) (Dễ :v)Trong 2 STNLT có 1 số chẵn, 1 số lẻ
Mà số chẵn thì chia hết cho 2 => Cái cần chứng minh
b) Có : ab = 10a + b
ba = 10b + a => ab + ba = 10a + 10b + a+b = (10a +a) + (10b+b) = 11a + 11b = 11(a+b)
Vì a,b là các cs => a,b \(\in\)N => 11(a+b) \(⋮\)11 => ab + ba \(⋮\)11