Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C5:
Đặt vật AB trong khoảng tiêu cự.
+ Ảnh của vật AB tạo bởi thấu kính hội tụ lớn hơn vật (H.45.2).
+ Ảnh của vật AB tạo bởi thấu kính phân kì nhỏ hơn vật (H.45.3)
C7:
- Xét 2 cặp tam giác đồng dạng trong hình 45.2: OB'F' và BB'I; OAB và OA'B'
Từ hệ thức đồng dạng, ta tính được h' = 3h = l,8cm; OA' = 24cm.
- Xét hai cặp tam giác đồng dạng trong hình 45.3: FB'O và IB'B; OA'B' và OAB.
Từ hệ thức đồng dạng, ta tính được: h' = 0,36cm; OA' = 4,8cm.
+ Ảnh của vật AB tạo bởi thấu kính phân kì nhỏ hơn vật (H.45.3).
C5.
+ Thấu kính là hội tụ: Ảnh của vật AB (hình 45.4) tạo bởi thấu kính hội tụ lớn hơn vật.
+ Thấu kính là phân kì: Ảnh của vật AB(hình 45.5) tạo bởi thấu kính phân kì nhỏ hơn vật.
C7.
Tam giác BB'I đồng dạng với tam giác OB'F' cho ta:
=> => => = 1,5
1 + = 1,5 => = 0,5 = => = 2
Tam giác OAB đồng dạng với tam giác OA'B', cho ta:
(*)
Ta tính tỉ số: =
Xét tam giác \(OAB\sim\) tam giác \(OA'B'\)
\(\dfrac{OA}{OA'}=\dfrac{AB}{A'B'}=\dfrac{OI}{A'B'}\) ( do OI = A'B' ) (1)
Xét tam giác \(OIF'\sim\) tam giác \(A'B'F'\)
\(\dfrac{OI}{A'B'}=\dfrac{OF'}{A'F'}\) (2)
\(\left(1\right);\left(2\right)\Rightarrow\dfrac{OA}{OA'}=\dfrac{OF'}{A'F'}=\dfrac{OF'}{OA'+OF'}\)
\(\Leftrightarrow\dfrac{8}{OA'}=\dfrac{12}{OA'+12}\)
\(\Leftrightarrow OA'=24\left(cm\right)\)
Thay \(OA'=24\) vào (1) \(\Leftrightarrow\dfrac{8}{24}=\dfrac{3}{A'B'}\)
\(\Leftrightarrow A'B'=9\left(cm\right)\)
Vậy khoảng cách từ ảnh đến thấu kính là 24 cm
chiều cao của ảnh là 9 cm
Ảnh thật, ngược chiều và lớn hơn vật.
Khoảng cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow\dfrac{1}{15}=\dfrac{1}{25}+\dfrac{1}{d'}\Rightarrow d'=37,5cm\)
Độ cao ảnh:
\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{5}{h'}=\dfrac{25}{37,5}\Rightarrow h'=7,5cm\)
Nếu còn tiếp tục cop bài thiếu Tham Khảo từ hoidap247 nữa sẽ trực tiếp báo cáo lên admin box Lí khoá acc !!!
Tham khảo hình vẽ!!!
\(\Delta OAB\sim\Delta OA'B'\)
\(\Rightarrow\dfrac{AB}{A'B'}=\dfrac{OA}{OA'}\Rightarrow\dfrac{4}{A'B'}=\dfrac{4}{OA'}\left(1\right)\)
\(\Delta FA'B'\sim\Delta FOI\)
\(\Rightarrow\dfrac{OI}{A'B'}=\dfrac{OF}{OF-OA'}=\dfrac{OA}{A'B'}\)
\(\Rightarrow\dfrac{4}{A'B'}=\dfrac{12}{12-OA'}\left(2\right)\)
\(\Rightarrow\dfrac{4}{OA'}=\dfrac{12}{12-OA'}\Rightarrow OA'=3cm\)
\(\Rightarrow A'B'=\dfrac{AB\cdot OA'}{OA}=\dfrac{4\cdot3}{4}=3cm\)