K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(P=\left(\dfrac{1}{1-\sqrt{a}}-\dfrac{1}{1+\sqrt{a}}\right)\cdot\left(1-\dfrac{1}{\sqrt{a}}\right)\)

\(=\dfrac{1+\sqrt{a}-1+\sqrt{a}}{-\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\cdot\dfrac{\sqrt{a}-1}{\sqrt{a}}\)

\(=\dfrac{-2\sqrt{a}}{\sqrt{a}\left(\sqrt{a}+1\right)}=\dfrac{-2}{\sqrt{a}+1}\)

23 tháng 8 2017

\(A=\left[1:\left(1-\frac{\sqrt{a}}{1+\sqrt{a}}\right)\right]\left[\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{a\sqrt{a}-a+\sqrt{a}-1}\right]\)

\(=\left[1:\left(\frac{1+\sqrt{a}-\sqrt{a}}{1+\sqrt{a}}\right)\right]\left[\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}-1\right)}\right]\)

\(=\left(1:\frac{1}{1+\sqrt{a}}\right).\frac{a+1-2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(a+1\right)}\)

\(=\left(\sqrt{a}+1\right).\frac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)\left(a+1\right)}\)

\(=\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{a+1}=\frac{a-1}{a+1}\)

16 tháng 11 2021

a: \(A=\dfrac{2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}}=\dfrac{2\sqrt{x}+1}{x+\sqrt{x}}\)

Ta có: \(A=\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}-\dfrac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right)\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\)

\(=\dfrac{a+2\sqrt{a}+1-a+2\sqrt{a}-1+4\sqrt{a}\left(a-1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}}\)

\(=\dfrac{4\sqrt{a}\left(1+a-1\right)}{\sqrt{a}}\)

\(=4a\)

Để \(\sqrt{A}>A\) thì \(\sqrt{4a}>4a\)

\(\Leftrightarrow2\sqrt{a}-4a>0\)

\(\Leftrightarrow2\sqrt{a}\left(1-2\sqrt{a}\right)>0\)

\(\Leftrightarrow2\sqrt{a}< 1\)

\(\Leftrightarrow a< \dfrac{1}{4}\)

Kết hợp ĐKXĐ, ta được: \(0< a< \dfrac{1}{4}\)

\(A=\left[1:\left(\dfrac{1+\sqrt{a}-\sqrt{a}}{\sqrt{a}+1}\right)\right]\cdot\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(a+1\right)}\right)\)

\(=\dfrac{\sqrt{a}+1}{1}\cdot\dfrac{a+1-2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{\sqrt{a}+1}{1}\cdot\dfrac{\left(a+1\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)^2}\)

\(=\dfrac{\left(a+1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}-1}\)

2 tháng 8 2017

ĐK \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

Ta có \(A=\left(\frac{1}{\sqrt{x}-1}+\frac{x-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}+2}-\frac{x-\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right)\)

\(=\frac{\sqrt{x}+2+x-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}:\frac{x-1-x+\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{x+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}.\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+3}=\frac{x+3}{\sqrt{x}+3}\)

9 tháng 6 2017

\(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}=\dfrac{\left(1-a\sqrt{a}\right)\left(1+\sqrt{a}\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}=\dfrac{1+\sqrt{a}-a\sqrt{a}-a^2}{1-a}=\dfrac{\left(1-a\right)\left(\sqrt{a}+a+1\right)}{1-a}\)

=> \(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}=a+2\sqrt{a}+1=\left(\sqrt{a}+1\right)^2\)

Tương tự \(\dfrac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}=\left(\sqrt{a}-1\right)^2\)

biểu thức trong dấu ngoặc vuông = \(\left[\left(\sqrt{a}-1\right).\left(\sqrt{a}+1\right)\right]^2=\left(a-1\right)^2\)

\(E=\dfrac{1-a^2}{\left(a-1\right)^2}\)

29 tháng 11 2022

a: ĐKXĐ: x>=0; x<>1

b: \(A=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x\)

c: x>=0

=>-x<=0

=>-x+1<=1

Dấu = xảy ra khi x=0