K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

                                                          Đề kiểm tra học sinh giỏi lớp 7 ( Thời gian 120 phút )

Bài 1:( 6đ)

a)Tính \(A=1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)

b) Tìm x,y,z biết: \(3.\left(x-1\right)=2.\left(y-2\right);4.\left(y-2\right)=3.\left(z-3\right)\)và \(2x+3y-z=50\)

c) Cho \(B=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+\frac{24}{25}+...+\frac{2499}{2500}\). Chứng tỏ B không là số nguyên

Bài 2:( 3đ )

a) Chứng minh rằng: \(2a-5b+6c⋮17\)nếu \(a-11b+3c⋮17\)( a,b,c thuộc Z)

b) Biết \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\). Chứng minh rằng : \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

Bài 3: (3đ)

a) Độ dài ba cạnh của tam giác tỉ lệ với 2;3;4. Ba chiều cao tương ứng với 3 cạnh đó tỉ lệ với ba số nào ?

b) Ba phân số có tổng bằng \(\frac{213}{70}\), các tử của chúng tỉ lệ với 3;4;5 các mẫu của chúng tỉ lệ với 5;1;2. Tìm ba phân số đó.

Bài 4:(6đ)

Cho tam giác ABC vuông tại A ( AB < AC ). M là trung điểm của BC, trên tia đối của tia MA lấy N sao cho MA=MN. Vẽ AH vuông góc với BC tại H. Trên tia HC lấy điểm D sao cho HD=HA. Đường thẳng vuông góc với BC tại D cắt AC ở E.

1. Chứng minh tam giác ABC và tam giác CNA bằng nhau.

2.Chứng minh AB=AE

3.Gọi K là trung điểm BE. Tính số đo góc CHK.

Bài 5(2đ)

a) Cho 2n+1 là số nguyên tố ( n > 2 ). Chứng minh 2n-1 là hợp số.

b) Cho f(x)=ax2+bx+c Với a,b,c là các số hữu tỉ.

 Chứng tỏ rằng: \(f\left(-2\right).f\left(-3\right)\le0\). Biết rằng 13a+b+2c=0.

 

 

 

 Tìm thiên tài nek. Hoặc có thể tham khảo cho kì thi thành phố. 

 

2
11 tháng 3 2019

tuyển học sinh giỏi 7

11 tháng 3 2019

cấm đăng nhùng nhằng ko giải thì thui  tui tích sai 3 cái mỗi ngày đấy. Muốn nói gì thì chat riêng

14 tháng 11 2018

Gọi 3 phân số đó là \(\frac{a}{x},\frac{b}{y},\frac{c}{z}\)

Ta có các tử tỉ lệ với 3;4;5=>a:b:c=3:4:5=>\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)

Đặt \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k\)

=>\(\hept{\begin{cases}a=3k\\b=4k\\c=5k\end{cases}}\)

Lại có các mẫu tỉ lệ với 5,1,2=>x:y:z=5:1:2=>\(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}\)

Đặt \(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}=h\)

=> \(\hept{\begin{cases}x=5h\\y=h\\z=2h\end{cases}}\)

Ta có tổng 3 phân số là \(\frac{213}{70}\)

=> \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=\frac{213}{70}\)

(=) \(\frac{3k}{5h}+\frac{4k}{h}+\frac{5k}{2h}=\frac{213}{70}\)

(=) \(\frac{k}{h}.\left(\frac{3}{5}+4+\frac{5}{2}\right)=\frac{213}{70}\)

(=) \(\frac{k}{h}=\frac{3}{7}\)

=> \(\hept{\begin{cases}\frac{a}{x}=\frac{9}{35}\\\frac{b}{y}=\frac{12}{7}\\\frac{c}{z}=\frac{15}{14}\end{cases}}\)

14 tháng 11 2018

bài 3

Ta có \(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)

\(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6a}{4}\)

=\(\frac{15a-10b+6c-15a+10b-6a}{25+9+4}=0\)

=> \(\hept{\begin{cases}3a-2b=0\\2c-5a=0\\5b-3c=0\end{cases}\left(=\right)\hept{\begin{cases}3a=2b\\2c=5a\\5b=3c\end{cases}\left(=\right)\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{c}{5}=\frac{a}{2}\\\frac{b}{3}=\frac{c}{5}\end{cases}}}}\)

=> \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{-50}{10}=-5\)

=> \(\hept{\begin{cases}a=-10\\b=-15\\c=-25\end{cases}}\)

 4 đề cô Hòa đây nhé Hoàng https://olm.vn/thanhvien/1109157   . Mai thi rồi chúc thi tốt nhé my friend . Phải mang giải về nhé.  Đề 1 :  Đề trường Đăng Đạo năm 2013-2014Bài 1 : ( 1,5 điểm )a) Thực hiện phép tính :       \(A=\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^.-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)b) Tính tỉ...
Đọc tiếp

 4 đề cô Hòa đây nhé Hoàng https://olm.vn/thanhvien/1109157   . Mai thi rồi chúc thi tốt nhé my friend . Phải mang giải về nhé. 

 Đề 1 :  Đề trường Đăng Đạo năm 2013-2014

Bài 1 : ( 1,5 điểm )

a) Thực hiện phép tính : 

      \(A=\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^.-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)

b) Tính tỉ số \(\frac{A}{B}\) biết \(A=\frac{34}{7.13}+\frac{51}{13.22}+\frac{85}{22.37}+\frac{68}{37.49};B=\frac{39}{7.16}+\frac{65}{16.31}+\frac{52}{31.43}+\frac{26}{43.49}\)

Bài 2: ( 2 điểm ) Tìm x biết 

a) \(\left(\frac{2}{3}\right)^{2x+3}=\frac{2187}{128}\)

b) \(\left(2x-5\right)^{2007}=\left(2x-5\right)^{2005}\)

c) \(|x-7|+2x+5=6\)

Bài 3 ( 2 điểm )

a) Cho a+b+c =1010 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{201}\)Tính \(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

b) Cho x = by+cz ; y= ax+cz ; z=ax+by

Chứng minh rằng \(H=\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=2\)

Bài 4 ( 1,5 điểm )

a) Số A được chia thành 3 số theo tỉ lệ \(\frac{2}{5}:\frac{3}{4}:\frac{1}{6}\). Biết rằng tổng các bình phương của ba số đó bằng 24309. Tìm số A.

b) Tìm giá trị nhỏ nhất của \(A=|x-2006|=|2007-x|\) Khi x thay đổi

Bài 5 :

Cho tam giác cân ABC ( AB=AC ). Trên tia đối của tia  BC và CB lấy theo thứ tự các điểm D và E sao cho BD=CE.

a) Chứng minh tam giác ADE là tam giác cân

b) Gọi M là trung điểm của BC. Chứng minh AM là tia phân giác của góc DAE.

c) Từ B và C kẻ BH và Ck theo thứ tự vuông góc với AD và AE. Chứng minh BH=CK.

d) Chứng minh ba đường thẳng AM,BH và CK gặp nhau tại 1 điểm >

e) Gọi 2 tia phân giác ngoài tại các đỉnh D và E của tam giác ADE là F. Chứng minh rằng F thuộc tia AM và khoảng cách từ F đến 2 cạnh của tam giác ADE bằng nhau 

0
Dạng 1: Các phép tính với số thựcCâu 1: Làm tính bằng cách hợp lí x4 = 16Câu 2: Tìm x ( x + 5) 3 = -64 Dạng 2: Tỉ lệ thứcCâu 3: Tìm x, biết:* 2\(\frac{1}{3}\): \(\frac{1}{3}\)= \(\frac{7}{9}\): x* 1\(\frac{1}{3}\): 0,8 = \(\frac{2}{3}\): (0,1x)Câu 4: Tìm hai số x và y biết x : 2 = y : (-5) và x - y = -7 Dạng 3: Đai lượng tỉ lệ thuận, tỉ lệ nghịch - Toán chia tỉ lệCâu 5: 5m dây đồng nặng 43g....
Đọc tiếp

Dạng 1: Các phép tính với số thực

Câu 1: Làm tính bằng cách hợp lí

x4 = 16

Câu 2: Tìm x

( x + 5) 3 = -64

Dạng 2: Tỉ lệ thức

Câu 3: Tìm x, biết:

* 2\(\frac{1}{3}\): \(\frac{1}{3}\)= \(\frac{7}{9}\): x

* 1\(\frac{1}{3}\): 0,8 = \(\frac{2}{3}\): (0,1x)

Câu 4: Tìm hai số x và y biết x : 2 = y : (-5) và x - y = -7

Dạng 3: Đai lượng tỉ lệ thuận, tỉ lệ nghịch - Toán chia tỉ lệ

Câu 5: 5m dây đồng nặng 43g. Hỏi 10km dây đồng như thế nặng bao nhiêu kilogam?

Câu 6: Số học sinh giỏi, khá, trung bình của khối 7 lần lượt tỉ lê với 2 : 3: 5. Tính số học sinh khá, giỏi, trung bình, biết tổng số học sinh khá và học sinh trung bình hơn học sinh giỏi là 180 em

Dạng 4: Hàm số

Câu 7: Cho hàm số y = f(x) = x2 - 8

a) Tính f(3) ; f(-2)

b) Tìm x khi biết giá trị tương ứng y là 17

Ai giúp mk với. Mk tick cho. Bạn nào biết giải bài nào thì giải giúp mk với.

Cảm ơn nhìu. (^///.\\\^)

2
16 tháng 12 2016

Câu 1:

\(x^4=16\)

\(\Rightarrow x=2\) hoặc \(x=-2\)

Vậy \(x\in\left\{2;-2\right\}\)

Câu 2:
\(\left(x+5\right)^3=-64\)

\(\Rightarrow\left(x+5\right)^3=\left(-4\right)^3\)

\(\Rightarrow x+5=-4\)

\(\Rightarrow x=-9\)

Vậy \(x=-9\)

Câu 4:

Giải:

Ta có: \(\frac{x}{2}=\frac{y}{-5}\)\(x-y=-7\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{-7}{7}=-1\)

+) \(\frac{x}{2}=-1\Rightarrow x=-2\)

+) \(\frac{y}{-5}=-1\Rightarrow y=5\)

Vậy cặp số \(\left(x;y\right)\)\(\left(-2;5\right)\)

 

 

16 tháng 12 2016

Câu 5:

Giải:

Đổi 10km = 10000m

Gọi 10000m dây đồng nặng x ( kg )

Vì số dây đồng tỉ lệ thuận với số cân nặng nên ta có:

\(\frac{5}{43}=\frac{10000}{x}\)

\(\Rightarrow x=\frac{10000.43}{5}=86000\left(kg\right)\)

Vậy 1km dây đồng nặng 86000 kg

Câu 6:

Giải:

Gọi số học sinh giỏi, khá , trung bình của khối 7 là a, b, c \(\left(a;b;c\in N\right)\)

Ta có: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)\(c+b-a=180\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{c+b-a}{3+5-2}=\frac{180}{6}=30\)

+) \(\frac{a}{2}=30\Rightarrow a=60\)

+) \(\frac{b}{3}=30\Rightarrow b=90\)

+) \(\frac{c}{5}=30\Rightarrow c=150\)

Vậy số học sinh giỏi là 60 học sinh

số học sinh khá là 90 học sinh

số học sinh trung bình là 150 học sinh

Câu 7:

a) Ta có: \(y=f\left(x\right)=x^2-8\)

\(f\left(3\right)=3^2-8=9-8=1\)

\(f\left(-2\right)=\left(-2\right)^2-8=4-8=-4\)

b) Khi y = 17

\(\Rightarrow17=x^2-8\)

\(\Rightarrow x^2=25\)

\(\Rightarrow x=5\) hoặc \(x=-5\)

Vậy \(x\in\left\{5;-5\right\}\)
 

 

1. Một cửa hàng có 3 tấm vải, dài tổng cộng 126m. Sau khi họ bán đi \(\frac{1}{2}\)tấm vải thứ nhất, \(\frac{2}{3}\)tấm vải thứ hai và \(\frac{3}{4}\)tấm vải thứ ba, thì số vải còn lại ở ba tấm bằng nhau. Hãy tính chiều dài của ba tấm vải lúc ban đầu.2. Có 3 tủ sách đựng tất cả 2250 cuốn sách. Nếu chuyển 100 cuốn từ tủ thứ nhất sang tủ thứ ba thì...
Đọc tiếp

1. Một cửa hàng có 3 tấm vải, dài tổng cộng 126m. Sau khi họ bán đi \(\frac{1}{2}\)tấm vải thứ nhất, \(\frac{2}{3}\)tấm vải thứ hai và \(\frac{3}{4}\)tấm vải thứ ba, thì số vải còn lại ở ba tấm bằng nhau. Hãy tính chiều dài của ba tấm vải lúc ban đầu.

2. Có 3 tủ sách đựng tất cả 2250 cuốn sách. Nếu chuyển 100 cuốn từ tủ thứ nhất sang tủ thứ ba thì số sách ở tủ thứ 1, thứ 2, thứ 3 tỉ lệ với 16,15,14. Hỏi trước khi chuyển thì mỗi tủ có bao nhiêu cuốn sách?

3. Ba xí nghiệp cùng xây dựng chung 1 cây cầu hết 38 triệu đồng. Xí nghiệp 1 có 40 xe ở cách cầu 1,5 km, xí nghiệp 2 có 20 xe ở cách cầu 3 km, xí nghiệp 3 có 30 xe cách cầu 1 km. Hoi3moi64 xí nghiệp phải trả cho việc xây dựng cầu bao nhiêu tiền, biết rằng số tiền phải trả tỉ lệ thuận với số xe và tỉ lệ nghịch với khoảng cách từ xí nghiệp đến cầu?

4. Số hs 4 khối 6, 7, 8, 9 tỉ lệ với các số 9; 8; 7; 6. Biết rằng số hs khối 9 ít hơn số hs khối 7 là 70 hs. Tính số hs của mỗi khối.

5. Theo hợp đồng, 2 tổ sản xuất chia lãi với nhau theo tỉ lệ 3 : 5. Hỏi mỗi tổ được chia bao nhiêu nếu tổng số lãi là 12 800 000 đồng.

6. Tính độ dài các cạnh của 1 tam giác biết chu vi là 22 cm và các cạnh tỉ lệ với các số 2; 4; 5.

1
31 tháng 7 2016

Bài 1: Gọi chiều dài 3 tấm vải lúc đầu lần lượt là a,b,c. 

Theo đề bài, ta có: a+b+c= 126 (m) 

và \(a-\frac{1}{2}\cdot a=b-\frac{2}{3}\cdot b=c-\frac{3}{4}\cdot c\)

\(\Leftrightarrow\left(1-\frac{1}{2}\right)a=\left(1-\frac{2}{3}\right)b=\left(1-\frac{3}{4}\right)c\)

\(\Leftrightarrow\frac{1}{2}a=\frac{1}{3}b=\frac{1}{4}c\)

Áp dụng t/c của dãy tỉ số bằng nhau:

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{126}{9}=14\)

Đến đây tự tìm a,b,c.

Bài 2: 

Gọi số sách ở 3 tủ lần lượt là a,b,c:

Theo đề bài, ta có: a+b+c = 2250

và \(\frac{a-100}{16}=\frac{b}{15}=\frac{c+100}{14}\)

Áp dụng t/c của dãy tỉ số bằng nhau:

\(\frac{a-100}{16}=\frac{b}{15}=\frac{c+100}{14}=\frac{a-100+b+c+100}{16+15+14}=\frac{2250}{45}=50\)

Tự tìm tiếp nha.

Bài 4: Gọi số hs khối 6,7,8,9 lần lượt là a.b.c.d .

Theo đề, ta có; b - d = 70

và \(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}\)

Đặt \(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}=k\)

\(\Rightarrow a=9k\)

\(b=8k\)

\(c=7k\)

\(d=6k\)

Thay b= 8k và d=6k vào b-d= 70:

8k - 6k = 70

2k = 70

k= 35

=>  a=9k = 9* 35 = 315

(tìm b,c,d tương tự như tìm a. Sau đó kết luận)

Bài 5: Gọi số lãi của 2 tổ là a và b.

Theo đề , ta có: a+b = 12 800 000

và \(\frac{a}{b}=\frac{3}{5}\Rightarrow\frac{a}{3}=\frac{b}{5}\)

Áp dụng t/c của dãy tỉ số bằng nhau:

\(\frac{a}{3}=\frac{b}{5}=\frac{a+b}{3+5}=\frac{12800000}{8}=1600000\)

(tự tìm a,b)

Bài 6: 

Gọi độ dài 3 cạnh của tam giác đó là a,b,c:

Theo đề, ta có: a+b+c=22

và \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{22}{10}=2,2\)

=> (tự tìm a,b,c)