Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOAC vuông tại A và ΔOBC vuông tại B có
OC chung
\(\widehat{AOC}=\widehat{BOC}\)
Do đó: ΔOAC=ΔOBC
Suy ra: CA=CB
b: Xét ΔCAD vuông tại A và ΔCBE vuông tại B có
CA=CB
\(\widehat{ACD}=\widehat{BCE}\)
Do đó:ΔCAD=ΔCBE
Suy ra: CD=CE
5y−3x=2xy−115y−3x=2xy−11
⇒2xy+3x−5y−11=0⇒2xy+3x−5y−11=0
⇒4xy+6x−10y−22=0⇒4xy+6x−10y−22=0
⇒(4xy+6x)−(10y+15)=7⇒(4xy+6x)−(10y+15)=7
⇒2x(2y+3)−5(2y+3)=7⇒2x(2y+3)−5(2y+3)=7
⇒(2x−5)(2y+3)=7⇒(2x−5)(2y+3)=7
Ta có các TH sau:
TH1: {2x−5=12y+3=7⇒{x=3y=2{2x−5=12y+3=7⇒{x=3y=2
TH2: {2x−5=−12y+3=−7⇒{x=2y=−5{2x−5=−12y+3=−7⇒{x=2y=−5
TH3: {2x−5=72y+3=1⇒{x=6y=−1{2x−5=72y+3=1⇒{x=6y=−1
TH4: {2x−5=−72y+3=−1⇒{x=−1y=−2{2x−5=−72y+3=−1⇒{x=−1y=−2
Vậy......................................
Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá
3/ (Bạn tự vẽ hình giùm)
a/ \(\Delta ABC\)và \(\Delta ADC\)có:
\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)
Cạnh AC chung
\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)
=> \(\Delta ABC\)= \(\Delta ADC\)(g. c. g)
=> AD = BC (hai cạnh tương ứng)
và AB = DC (hai cạnh tương ứng)
b/ Ta có AD = BC (cm câu a)
và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)
và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)
=> AN = MC
Chứng minh tương tự, ta cũng có: BM = ND
\(\Delta AMB\)và \(\Delta CND\)có:
BM = ND (cmt)
\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)
AB = CD (\(\Delta ABC\)= \(\Delta ADC\))
=> \(\Delta AMB\)= \(\Delta CND\)(c. g. c)
=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)
và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)= \(\Delta ADC\))
=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)
=> \(\widehat{MAC}=\widehat{ACN}\)(1)
Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)
và AN = MC (cmt) (3)
=> \(\Delta MAC=\Delta NAC\)(g, c. g)
=> AM = CN (hai cạnh tương ứng) (đpcm)
c/ \(\Delta AOB\)và \(\Delta COD\)có:
\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)
AB = CD (cm câu a)
\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)
=> \(\Delta AOB\)= \(\Delta COD\)(g. c. g)
=> OA = OC (hai cạnh tương ứng)
và OB = OD (hai cạnh tương ứng)
d/ \(\Delta ONA\)và \(\Delta MOC\)có:
\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)
OA = OC (O là trung điểm AC)
\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)
=> \(\Delta ONA\)= \(\Delta MOC\)(g. c. g)
=> ON = OM (hai cạnh tương ứng)
=> O là trung điểm MN
=> M, O, N thẳng hàng (đpcm)
a,Vì oz lak phân giác của xoy nên xoz=yoz=xoy/2
xét tam giác AOI và tam giác BOI có:
OA=OB(gt)
AOI=BOI(cmt)
OI lak cạnh chung nên tam giác AOI=BOI(cgc)(đpcm)
a: Xét ΔOHC vuông tại H và ΔOKC vuông tại K có
OC chung
góc HOC=góc KOC
=>ΔOHC=ΔOKC
b: ΔOHC=ΔOKC
=>HO=KO
=>ΔOKH cân tại O
c: ΔOHK cân tại O
mà OM là phân giác
nên OM vuông góc HK
d: Xét ΔOHA vuông tại H và ΔOKB vuông tại K có
OH=OK
góc HOA chung
=>ΔOHA=ΔOKB
=>OA=OB
Xét ΔOAB có OH/OB=OK/OA
nên HK//AB
C1: a)Vì OA=OB
=>tam giác AOB cân tại O
Xét tam giác ABO có OI là tia phân giác đồng thời là đường cao
=>OI vuông góc với AB
b)
Xét tam giác OAC và tam giác OBC có:
OA=OB(gt)
góc AOC= góc BOC(OC là tia phân giác góc AOB
OC chung
=> tam giác AOC= tam giác BOC(c-c-c)
=>\(\widehat{OAC}=\widehat{OBC}=90độ\)(2 góc tương ứng)
Vậy BC vuông góc với Oy
C2:
a)Xét tam giác OAI và tam giác OBI có:
OA=OB
góc AOI=gócBOI(OI là tia phân giác góc AOB)
=>góc OIA= góc OIB=90độ(2 góc tương ứng)
=>OI vuông góc với BC
b)Xét tam giác AOC và tam giác BOC có:
OA=OB(gt)
góc AOC = góc BOC(OC là tia phân giác góc AOB)
OC chung
=>tam giác AOC=tam giác BOC(c-g-c)
=>góc OAC= góc OBC=90độ(2 góc tương ứng)
=>BC vuông góc với Oy
Nếu bạn học xong lớp 7 rồi thì làm cách 1 còn nếu bạn mới học lớp 7 thì làm theo cách 2 để giải chi tiết
A) Vì Oz là tia phân giác của góc xOy nên \(\widehat{xOz}=\widehat{yOz}=\widehat{\frac{xOy}{2}}\)
Xét tam giác AOI và tam giác BOI có :
OA = OB ( gt )
AOI = BOI ( cmt)
OI là cạnh chung
Nên : \(\Delta AOI=\Delta BOI\)( c . g . c ) ( đpcm)
b) Xét tam giác AOH và tam giác BOH có :
OA = OB ( gt)
AOH = BOH ( CÂU A )
OH là cạnh chung
Nên ta có : \(\Delta AOH=\Delta BOH\)( c . g. c )
\(\Rightarrow AHO=BHO\)( 2 góc tương ứng )
Mà AHO + BHO = \(180^o\) ( kề bù ) nên AHO = BHO = \(90^o\)
nên AB vuông góc với OI ( đpcm)
Chúc ban học tốt !!!
a: Xét ΔOAC vuông tại A và ΔOBC vuông tại B có
OC chung
góc AOC=góc BOC
=>ΔOAC=ΔOBC
=>OA=OB và CA=CB
b: Xét ΔCAD vuông tại A và ΔCBE vuông tại B có
CA=CB
góc ACD=góc BCE
=>ΔCAD=ΔCBE
=>CD=CE và AD=BE
c: Xét ΔOED có OA/AD=OB/BE
nên AB//ED