K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2023

a) Ta có: \(\dfrac{x}{y}=\dfrac{20}{9}\Rightarrow\dfrac{x}{20}=\dfrac{y}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{20}=\dfrac{y}{9}=\dfrac{x-y}{20-9}=\dfrac{-44}{11}=-4\) 

\(\Rightarrow\left\{{}\begin{matrix}x=20\cdot-4=-80\\y=-4\cdot9=-36\end{matrix}\right.\)

b) \(\dfrac{x}{y}=2\dfrac{1}{2}\Rightarrow\dfrac{x}{y}=\dfrac{5}{2}\Rightarrow\dfrac{x}{5}=\dfrac{y}{2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{5}=\dfrac{y}{2}\Rightarrow\dfrac{x+y}{5+2}=\dfrac{40}{7}\) 

\(\Rightarrow\left\{{}\begin{matrix}\text{x}=\dfrac{40}{7}\cdot5=\dfrac{200}{7}\\y=\dfrac{40}{7}\cdot2=\dfrac{80}{7}\end{matrix}\right.\)

13 tháng 11 2023

Làm mỗi ý a,b cũng được ạ

Bài 4:

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>\(a=b\cdot k;c=d\cdot k\)

\(\dfrac{a+3b}{b}=\dfrac{bk+3b}{b}=\dfrac{b\left(k+3\right)}{b}=k+3\)

\(\dfrac{c+3d}{d}=\dfrac{dk+3d}{d}=\dfrac{d\left(k+3\right)}{d}=k+3\)

Do đó: \(\dfrac{a+3b}{b}=\dfrac{c+3d}{d}\)

Bài 2:

a: x:y=4:7

=>\(\dfrac{x}{4}=\dfrac{y}{7}\)

mà x+y=44

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{4}=\dfrac{y}{7}=\dfrac{x+y}{4+7}=\dfrac{44}{11}=4\)

=>\(x=4\cdot4=16;y=4\cdot7=28\)

b: \(\dfrac{x}{2}=\dfrac{y}{5}\)

mà x+y=28

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{28}{7}=4\)

=>\(x=4\cdot2=8;y=4\cdot5=20\)

Bài 3:

Đặt \(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=k\)

=>x=5k; y=4k; z=3k

\(M=\dfrac{x+2y-3z}{x-2y+3z}\)

\(=\dfrac{5k+2\cdot4k-3\cdot3k}{5k-2\cdot4k+3\cdot3k}\)

\(=\dfrac{5+8-9}{5-8+9}=\dfrac{4}{6}=\dfrac{2}{3}\)

23 tháng 1

bài 1 đâu hả bạn 

 

16 tháng 9 2018

Ta có \(\left(\frac{x}{y}\right)^2=\frac{16}{9}=\left(\pm\frac{4}{3}\right)^2\)

\(\frac{x}{y}\)dương nên \(\frac{x}{y}=\frac{4}{3}\Rightarrow x=\frac{4y}{3}\)

Thay \(x=\frac{4y}{3}\)vào \(x^2+y^2=100\)ta được

\(\left(\frac{4y}{3}\right)^2+y^2=100\)

\(\frac{16}{9}.y^2+y^2=100\)

\(y^2.\left(\frac{16}{9}+1\right)=100\)

\(y^2.\frac{25}{9}=100\)

\(y^2=100:\frac{25}{9}=36\)

\(y=6\)( vì y dương  )

20 tháng 11 2020

a, Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{3}=\frac{y}{-2}=\frac{2x+5y}{2.3+5.\left(-2\right)}=-\frac{12}{-4}=3\)

\(x=-3;y=6\)

b, Theo bài ra ta có : \(x:y=4:5\Leftrightarrow\frac{x}{4}=\frac{y}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{4}=\frac{y}{5}=\frac{x-y}{4-5}=\frac{13}{-1}=-13\)

\(x=-52;y=-65\)

c, Theo bài ra ta có: \(4x=7y\Leftrightarrow\frac{x}{7}=\frac{y}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{7}=\frac{y}{4}=\frac{x-y}{7-4}=\frac{12}{3}=4\)

\(x=28;y=16\)

Khó quá !!!!

7 tháng 3 2019

a, \(\frac{x}{5}=\frac{y}{6};\frac{y}{8}=\frac{z}{7};x+y-7=60\)

\(\Rightarrow\frac{x}{5.8}=\frac{y}{6.8};\frac{y}{8.6}=\frac{z}{7.6};x+y=67\)

\(\Rightarrow\frac{x}{40}=\frac{y}{48};\frac{y}{48}=\frac{z}{42};x+y=67\)

\(\Rightarrow\frac{x}{40}=\frac{y}{48}=\frac{z}{42};x+y=67\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{40}=\frac{y}{48}=\frac{x+y}{40+48}=\frac{67}{88}\)

Tính nốt nha

AH
Akai Haruma
Giáo viên
7 tháng 3 2023

a. Áp dụng tính chất dãy tỉ số bằng nhau:

$\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{-21}{7}=-3$

$\Rightarrow x=2(-3)=-6; y=5(-3)=-15$

b. Áp dụng tính chất dãy tỉ số bằng nhau:

$7x=3y=\frac{x}{\frac{1}{7}}=\frac{y}{\frac{1}{3}}=\frac{x-y}{\frac{1}{7}-\frac{1}{3}}=\frac{16}{\frac{-4}{21}}=-84$

$\Rightarrow x=(-84):7=-12; y=-84:3=-28$

 

AH
Akai Haruma
Giáo viên
7 tháng 3 2023

c. $\frac{x}{y}=\frac{5}{9}\Rightarrow \frac{x}{5}=\frac{y}{9}$

Áp dụng tính chất dãy tỉ số bằng nhau:

$\frac{x}{5}=\frac{y}{9}=\frac{3x}{15}=\frac{2y}{18}=\frac{3x+2y}{15+18}=\frac{66}{33}=2$

$\Rightarrow x=2.5=10; y=9.2=18$

d. Áp dụng tính chất dãy tỉ số bằng nhau:

$\frac{x}{15}=\frac{y}{7}=\frac{2y}{14}=\frac{x-2y}{15-14}=\frac{16}{1}=16$

$\Rightarrow x=16.15=240; y=7.16=112$

e.

Đặt $\frac{x}{5}=\frac{y}{2}=k\Rightarrow x=5k ; y=2k$

Khi đó: $xy=5k.2k=10k^2=1000\Rightarrow k^2=100\Rightarrow k=\pm 10$

Với $k=10$ thì $x=5k=50; y=2k=20$

Với $k=-10$ thì $x=5k=-50; y=2k=-20$

 

3 tháng 5 2016

Miu Ti làm vớ vẩn

a)Từ \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

\(\Rightarrow\frac{3x^2}{27}=\frac{2y^2}{32}=\frac{5z^2}{125}\)

Theo t/c dãy tỉ số=nhau:

\(\frac{3x^2}{27}=\frac{2y^2}{32}=\frac{5z^2}{125}=\frac{5z^2-3x^2-2y^2}{125-27-32}=\frac{594}{66}=9\)

\(\)\(\Rightarrow3x^2=9.27=243\Rightarrow x^2=\frac{243}{3}=81\Rightarrow x\in\left\{9;-9\right\}\)

     \(2y^2=9.32=288\Rightarrow y^2=\frac{288}{2}=144\Rightarrow y\in\left\{12;-12\right\}\)

    \(5z^2=9.125=1125\Rightarrow z^2=\frac{1125}{5}=225\Rightarrow z\in\left\{15;-15\right\}\)

Vậy..............

b)Từ \(x+y=3\left(x-y\right)\Rightarrow3x-3y=x+y\Rightarrow3x-x=y+3y\Rightarrow2x=4y\)

\(\Rightarrow2x=2.2y\Rightarrow x=2y\Rightarrow\frac{x}{y}=2\)

\(x+y=\frac{x}{y}\) (theo đề)

\(\Rightarrow x+y=2\Rightarrow2y+y=2\Rightarrow3y=2\Rightarrow y=\frac{2}{3}\)

khi đó \(x=2y=2.\frac{2}{3}=\frac{4}{3}\)

Vậy x=4/3;y=2/3

a/ Ta có x:y:z=3:4:5 

=> \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{5\cdot z^2-3\cdot x^2-2\cdot y^2}{5\cdot5^2-3.3^2-2\cdot4^2}=\frac{594}{66}=9\)

=> x=9.3=27

     y=9*4=36

    z=9*5=45

b/ Từ từ rồi tui làm

31 tháng 8 2021

\(x:y=1\dfrac{2}{3}\Rightarrow\dfrac{x}{y}=\dfrac{5}{3}\Rightarrow\dfrac{x}{5}=\dfrac{y}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x-y}{5-3}=\dfrac{60}{2}=30\)

\(\dfrac{x}{5}=30\Rightarrow x=150\\ \dfrac{y}{3}=30\Rightarrow y=90\)

31 tháng 8 2021

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{x^2+y^2}{4+9}=\dfrac{52}{13}=4\)

\(\dfrac{x^2}{4}=4\Rightarrow x^2=16\\ \Rightarrow\left[{}\begin{matrix}x=-4\\x=4\end{matrix}\right.\)

\(\dfrac{y^2}{9}=4\Rightarrow y^2=36\Rightarrow\left[{}\begin{matrix}y=-6\\y=6\end{matrix}\right.\)

Vậy \(\left(x,y\right)=\left\{\left(-4;-6\right);\left(4;6\right)\right\}\)

AH
Akai Haruma
Giáo viên
30 tháng 9 2021

Lời giải:

a. Áp dụng TCDTSBN:

\(\frac{x}{y}=\frac{2}{5}\Rightarrow \frac{x}{2}=\frac{y}{5}=\frac{2x}{4}=\frac{y}{5}=\frac{2x-y}{4-5}=\frac{3}{-1}=-3\)

$\Rightarrow x=-3.2=-6; y=-3.5=-15$

b. Áp dụng TCDTSBN:

$\frac{x}{2}=\frac{y}{3}; \frac{y}{4}=\frac{z}{7}$

$\Rightarrow \frac{x}{8}=\frac{y}{12}=\frac{z}{21}$

$=\frac{2x}{16}=\frac{y}{12}=\frac{z}{21}=\frac{2x-y+z}{16-12+21}=\frac{50}{25}=2$

$\Rightarrow x=8.2=16; y=2.12=24; z=2.21=42$

c.

$\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$

$\Rightarrow \frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{2z^2}{32}$

$=\frac{x^2-y^2+2z^2}{4-9+32}=\frac{108}{27}=4$

$\Rightarrow x^2=4.4=16; y^2=9.4=36; z^2=4.4=16$

Kết hợp với đkxđ suy ra:
$(x,y,z)=(4,6,4); (-4; -6; -4)$

30 tháng 9 2021

Em cảm ơn ạ

24 tháng 10 2018

a) Giải

\(5x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{5}\)

Đặt \(\dfrac{x}{2}=\dfrac{y}{5}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=5k\end{matrix}\right.\)

\(x-y=-7\)

\(\Rightarrow2k-5k=-7\)

\(\Rightarrow-3k=-7\)

\(\Rightarrow k=\dfrac{7}{3}\)

Vậy \(\left\{{}\begin{matrix}x=2k=2.\dfrac{7}{3}=\dfrac{14}{3}\\y=5k=5.\dfrac{7}{3}=\dfrac{35}{3}\end{matrix}\right.\)

b) Giải

\(5x=7y\Rightarrow\dfrac{x}{7}=\dfrac{y}{5}\)

Đặt \(\dfrac{x}{7}=\dfrac{y}{5}=k\Rightarrow\left\{{}\begin{matrix}x=7k\\y=5k\end{matrix}\right.\)

\(y-x=18\)

\(\Rightarrow5k-7k=18\)

\(\Rightarrow-2k=18\)

\(\Rightarrow k=-9\)

Vậy \(\left\{{}\begin{matrix}x=7k=7.\left(-9\right)=-63\\y=5k=5.\left(-9\right)=-45\end{matrix}\right.\)

c) Giải

\(x:y=3:4\Rightarrow\dfrac{x}{3}=\dfrac{y}{4}\)

Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=k\Rightarrow\left\{{}\begin{matrix}x=3k\\y=4k\end{matrix}\right.\)

\(x+y=-21\)

\(\Rightarrow3k+4k=-21\)

\(\Rightarrow7k=-21\)

\(\Rightarrow k=-3\)

Vậy \(\left\{{}\begin{matrix}x=3k=3.\left(-3\right)=-9\\y=4k=4.\left(-3\right)=-12\end{matrix}\right.\)

d) Giải

\(3x=7y\Rightarrow\dfrac{x}{7}=\dfrac{y}{3}\)

Đặt \(\dfrac{x}{7}=\dfrac{y}{3}=k\Rightarrow\left\{{}\begin{matrix}x=7k\\y=3k\end{matrix}\right.\)

\(x-y=-16\)

\(\Rightarrow7k-3k=-16\)

\(\Rightarrow4k=-16\)

\(\Rightarrow k=-4\)

Vậy \(\left\{{}\begin{matrix}x=7k=7.\left(-4\right)=-28\\y=3k=3.\left(-4\right)=-12\end{matrix}\right.\)