Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(ax+b\right)\left(x^2-x-1\right)=ax^3+cx^2+1\)
\(\Leftrightarrow ax^3+\left(b-a\right)x^2+\left(-b-a\right)x-b=ax^3+cx^2+0.x+1\)
sử dụng đồng nhất thức ta được: \(\hept{\begin{cases}b-a=c\\-b-a=0\\-b=1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=-1\\c=-2\end{cases}}\)
Ta có:
Áp dụng phương pháp hệ số bất định ta có:
Vậy giá trị a, b, c cần tìm là a= 1, b= -1, c= 0.
Ta có T = ( a x + 4 ) ( x 2 + b x – 1 )
= a x . x 2 + a x . b x + a x . ( - 1 ) + 4 . x 2 + 4 . b x + 4 . ( - 1 ) = a x 3 + a b x 2 – a x + 4 x 2 + 4 b x – 4 = a x 3 + ( a b x 2 + 4 x 2 ) + ( 4 b x – a x ) – 4 = a x 3 + ( a b + 4 ) x 2 + ( 4 b – a ) x – 4
Theo bài ra ta có
( a x + 4 ) ( x 2 + b x – 1 ) = 9 x 3 + 58 x 2 + 15 x + c đúng với mọi x
ó a x 3 + ( a b + 4 ) x 2 + ( 4 b – a ) x – 4 = 9 x 3 + 58 x 2 + 15 x + c đúng với mọi x.
ó a = 9 a b + 4 = 58 4 b - a = 15 - 4 = c ó a = 9 9 . b = 54 4 b - a = 15 c = - 4 ó a = 9 b = 6 c = - 4
Vậy a = 9, b = 6, c = -4
Đáp án cần chọn là: B