K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2023

A = \(\dfrac{1}{1+2+3}\) + \(\dfrac{1}{1+2+3+4}\) +......+\(\dfrac{1}{1+2+3+4+....+59}\)

A = \(\dfrac{1}{(3+1).3:2}\) + \(\dfrac{1}{(4+1).4:2}\)+......+\(\dfrac{1}{(59+1).59:2}\)

A = \(\dfrac{2}{3.4}\) + \(\dfrac{2}{4.5}\) +.....+ \(\dfrac{2}{59.60}\)

A = 2.(\(\dfrac{1}{3.4}+\dfrac{1}{4.5}+....+\dfrac{1}{59.60}\))

A = 2. ( \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) +....+ \(\dfrac{1}{59}\) - \(\dfrac{1}{60}\))

A = 2. ( \(\dfrac{1}{3}\) - \(\dfrac{1}{60}\))

A = 2. \(\dfrac{19}{60}\)

A = \(\dfrac{19}{30}\)

28 tháng 6 2017

a

= { 1*( 1+1/2+1/3+1/4) } / { 1 * ( 1-1/2 +1/3-1/4)} : { 3*(1+1/2+1/3+1/4)} / { 2*( 1-1/2 +1/3-1/4)}

Sau đó bn tự tính ra nhé cứ tính nhu bình thường sẽ ra.

Mà mình thấy máy câu này yêu cầu tính chứ có bảo tính theo cách hợp lí đâu? Vì thế bn cứ lấy máy tính tính như bình thường là được .

20 tháng 7 2017

Kết quả là : C1=\(\dfrac{2}{3}\)

a) \(2.04:\left(-3.12\right)=\dfrac{204}{-312}=\dfrac{-17}{26}\)

b) \(\left(-1\dfrac{1}{2}\right):1.25=\dfrac{-3}{2}:\dfrac{5}{4}=\dfrac{-3}{2}\cdot\dfrac{4}{5}=\dfrac{-12}{10}=\dfrac{-6}{5}\)

c) \(4:5\dfrac{3}{4}=4:\dfrac{23}{4}=4\cdot\dfrac{4}{23}=\dfrac{16}{23}\)

d) \(10\dfrac{3}{7}:5\dfrac{3}{14}=\dfrac{73}{7}:\dfrac{73}{14}=\dfrac{2}{1}\)

10 tháng 7 2021

undefined

8 tháng 8 2021

[] cai dau nay la gia tri tuyet doi nha

 

23 tháng 9 2023

a, -4\(\dfrac{3}{5}\).2\(\dfrac{4}{3}\) < \(x\) < -2\(\dfrac{3}{5}\): 1\(\dfrac{6}{15}\)

  - \(\dfrac{23}{5}\).\(\dfrac{10}{3}\) <   \(x\)   < - \(\dfrac{13}{5}\)\(\dfrac{21}{15}\)

   -  \(\dfrac{46}{3}\)     <  \(x\) < - \(\dfrac{13}{7}\) 

          \(x\) \(\in\) {-15; -14;-13;..; -2}

 

 

 

 

23 tháng 9 2023

a) Ta có \(-4\dfrac{3}{5}\cdot2\dfrac{4}{3}=-\dfrac{23}{5}\cdot\dfrac{10}{3}=-\dfrac{46}{3}\) và \(-2\dfrac{3}{5}\div1\dfrac{6}{15}=-\dfrac{13}{5}\div\dfrac{7}{5}=-\dfrac{13}{7}\)

Do đó \(-\dfrac{46}{3}< x< -\dfrac{13}{7}\)

Lại có \(-\dfrac{46}{3}\le-15\) và \(-\dfrac{13}{7}\ge-2\)

Suy ra \(-15\le x\le-2\), x ϵ Z

b) Ta có \(-4\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{6}\right)=-\dfrac{13}{3}\cdot\dfrac{1}{3}=-\dfrac{13}{9}\) và \(-\dfrac{2}{3}\left(\dfrac{1}{3}-\dfrac{1}{2}-\dfrac{3}{4}\right)=-\dfrac{2}{3}\cdot\dfrac{-11}{12}=\dfrac{11}{18}\)

Do đó \(-\dfrac{13}{9}< x< \dfrac{11}{18}\)

Lại có \(-\dfrac{13}{9}\le-1\) và \(\dfrac{11}{18}\ge0\)

Suy ra \(-1\le x\le0\), x ϵ Z

14 tháng 11 2023

2:

\(B=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\cdot...\cdot\left(\dfrac{1}{100^2}-1\right)\)

\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{100}+1\right)\)

\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}+1\right)\)

\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-99}{100}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\)

\(=-\dfrac{1}{100}\cdot\dfrac{101}{2}=\dfrac{-101}{200}< -\dfrac{100}{200}=-\dfrac{1}{2}\)

 

26 tháng 8 2023

Cậu ơi, câu đầu tớ vẫn chưa hiểu ý câu hỏi là như nào hết, cậu có thể viết lại cho tớ đko ạ? loading...  

26 tháng 8 2023

Câu 1 là : \(\dfrac{-2}{5}:1\dfrac{1}{3}-\left(\dfrac{1}{2}\right)^2\)

7 tháng 10 2017

a) \(\dfrac{-5}{9}.\dfrac{3}{11}+\dfrac{-13}{18}.\dfrac{3}{11}\)

\(=\dfrac{3}{11}.\left(\dfrac{-5}{9}+\dfrac{-13}{9}\right)\)

\(=\dfrac{3}{11}.\left(-2\right)\)

\(=\dfrac{-6}{11}\)

b) \(\dfrac{11}{2}.2\dfrac{1}{3}-1\dfrac{1}{5}.1\dfrac{1}{2}\)

\(=\dfrac{11}{3}.\dfrac{7}{3}-\dfrac{6}{5}.\dfrac{3}{2}\)

\(=\dfrac{77}{9}-\dfrac{9}{5}\)

\(=\dfrac{385}{45}-\dfrac{81}{45}\)

\(=\dfrac{304}{45}\)

c) \(1\dfrac{1}{9}.\dfrac{2}{145}-4\dfrac{1}{3}-\dfrac{2}{145}+\dfrac{2}{145}\)

\(=\dfrac{10}{9}.\dfrac{2}{145}-\dfrac{8}{3}\)

\(=\dfrac{4}{261}-\dfrac{8}{3}\)

\(=\dfrac{4}{261}-\dfrac{696}{261}\)

\(=-\dfrac{692}{261}\)

d) \(1-\dfrac{1}{2}+2-\dfrac{2}{3}+3-\dfrac{3}{4}+4-\dfrac{1}{4}-3-\dfrac{1}{3}-2-\dfrac{1}{2}-1\)

\(=\left(1-1\right)+\left(2-2\right)+\left(3-3\right)+4-\left(\dfrac{1}{2}+\dfrac{1}{2}\right)-\left(\dfrac{2}{3}+\dfrac{1}{3}\right)-\left(\dfrac{3}{4}+\dfrac{1}{4}\right)\)

\(=0+0+0+4-1-1-1\)

\(=4-3\)

\(=1\)

6 tháng 10 2018

a, Ta có :\(A=\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}+\dfrac{1}{2^{50}}\\ \Rightarrow2A=1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}\\ \Rightarrow2A-A=\left(1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}\right)-\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{50}}\right)\\ \Rightarrow A=1-\dfrac{1}{2^{50}}< 1\\ \Rightarrow A< 1\) Vậy \(A< 1\)

b, Ta có :

\(B=\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\\ \Rightarrow3B=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\\ \Rightarrow3B-B=\left(1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\right)\\ \Rightarrow2B=1-\dfrac{1}{3^{100}}< 1\\ \Rightarrow B< \dfrac{1}{2}\)Vậy \(B< \dfrac{1}{2}\)

c, Ta có :

\(C=\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{1000}}\\ \Rightarrow4C=1+\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{999}}\\\Rightarrow4C-C=\left(1+\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{999}}\right)-\left(\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{1000}}\right)\\ \Rightarrow3C=1-\dfrac{1}{4^{1000}}< 1\\ \Rightarrow C< \dfrac{1}{3}\)Vậy \(C< \dfrac{1}{3}\)

6 tháng 10 2018

Mình làm rồi đó !!!!!Trần Thị Hương Lan