Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(D=\dfrac{1}{5}-\dfrac{1}{5^2}+\dfrac{1}{5^3}-\dfrac{1}{5^4}+\dfrac{1}{5^5}-..........-\dfrac{1}{5^{100}}+\dfrac{1}{5^{101}}\)
\(5D=1-\dfrac{1}{5}+\dfrac{1}{5^2}-\dfrac{1}{5^3}+\dfrac{1}{5^4}-\dfrac{1}{5^5}+..........+\dfrac{1}{5^{100}}\)
\(5D+D=\left(1-\dfrac{1}{5}+\dfrac{1}{5^2}-\dfrac{1}{5^3}+.........+\dfrac{1}{5^{100}}\right)+\left(\dfrac{1}{5}-\dfrac{1}{5^2}+..............-\dfrac{1}{5^{100}}+\dfrac{1}{5^{101}}\right)\)\(6D=1-\dfrac{1}{5^{101}}\)
\(D=\dfrac{1-\dfrac{1}{5^{101}}}{6}\)
c) \(\dfrac{11}{10}-\dfrac{-7}{24}=\dfrac{11}{10}+\dfrac{7}{24}=\dfrac{167}{120}\)
e) \(\dfrac{-8}{3}\cdot\dfrac{15}{7}=\dfrac{-120}{21}=\dfrac{-40}{7}\)
f) \(\dfrac{-2}{5}\cdot4\dfrac{1}{2}=\dfrac{-2}{5}\cdot\dfrac{9}{2}=-\dfrac{9}{5}\)
g) \(\dfrac{5}{3}:\dfrac{5}{-3}=\dfrac{5}{3}:\dfrac{-5}{3}=\dfrac{5}{3}\cdot\dfrac{-3}{5}=-1\)
h) \(\dfrac{5}{4}:\left(-9\right)=\dfrac{5}{4}:\dfrac{-9}{1}=\dfrac{5}{4}\cdot\dfrac{-1}{9}=-\dfrac{5}{36}\)
c.\(\dfrac{3}{7}+\dfrac{5}{7}:x=\dfrac{1}{3}\)
\(\dfrac{5}{7}:x=\dfrac{1}{3}-\dfrac{3}{7}\)
\(\dfrac{5}{7}:x=-\dfrac{2}{21}\)
\(x=\dfrac{5}{7}:-\dfrac{2}{21}\)
\(x=-\dfrac{15}{2}\)
d.\(3\dfrac{1}{4}:\left|2x-\dfrac{5}{12}\right|=\dfrac{39}{16}\)
\(\left|2x-\dfrac{5}{12}\right|=3\dfrac{1}{4}:\dfrac{39}{16}\)
\(\left|2x-\dfrac{5}{12}\right|=\dfrac{4}{3}\)
\(\rightarrow\left[{}\begin{matrix}2x-\dfrac{5}{12}=\dfrac{4}{3}\\2x-\dfrac{4}{12}=-\dfrac{4}{3}\end{matrix}\right.\) \(\rightarrow\left[{}\begin{matrix}2x=\dfrac{7}{4}\\2x=-\dfrac{11}{12}\end{matrix}\right.\) \(\rightarrow\left[{}\begin{matrix}x=\dfrac{7}{8}\\x=-\dfrac{11}{24}\end{matrix}\right.\)
A, \(\dfrac{4}{9}+x=\dfrac{5}{3}\)
\(x\)\(=\dfrac{5}{3}-\dfrac{4}{9}\)
\(x\)\(=\dfrac{11}{9}\)
B,\(\dfrac{3}{4}.x=\dfrac{-1}{2}\)
\(x=\dfrac{-1}{2}:\dfrac{3}{4}\)
\(x=\)\(\dfrac{-2}{3}\)
Đặt biểu thức trong ngoặc đơn là B
\(5B=1+\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{98}}+\dfrac{1}{5^{99}}\)
\(\Rightarrow4B=5B-B=1-\dfrac{1}{5^{100}}\Rightarrow B=\dfrac{1}{4}\left(1-\dfrac{1}{5^{100}}\right)\)
\(\Rightarrow A=4.5^{100}.\dfrac{1}{4}\left(\dfrac{5^{100}-1}{5^{100}}\right)+1=\)
\(=5^{100}\)
Đặt \(A=\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}\)
Ta có: \(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{75}>\dfrac{1}{75}+\dfrac{1}{75}+...+\dfrac{1}{75}=\dfrac{25}{75}=\dfrac{1}{3}\)
\(\dfrac{1}{76}+\dfrac{1}{77}+...+\dfrac{1}{100}>\dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}=\dfrac{25}{100}=\dfrac{1}{4}\)
Do đó: \(A>\dfrac{1}{3}+\dfrac{1}{4}=\dfrac{7}{12}\)(1)
Ta có: \(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{75}< \dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{50}=\dfrac{25}{50}=\dfrac{1}{2}\)
\(\dfrac{1}{76}+\dfrac{1}{77}+...+\dfrac{1}{100}< \dfrac{1}{75}+\dfrac{1}{75}+...+\dfrac{1}{75}=\dfrac{25}{75}=\dfrac{1}{3}\)
Do đó: \(A< \dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)(2)
Từ (1) và (2) ta suy ra ĐPCM
a) \(\dfrac{5}{9}:\left(\dfrac{13}{7}+\dfrac{13}{9}\right)-\dfrac{5}{3}\)(chỗ này mk lười chép lại đề)
=\(\dfrac{5}{9}:\dfrac{208}{63}-\dfrac{5}{3}\)
=\(\dfrac{5}{9}.\dfrac{63}{208}-\dfrac{5}{3}\)
=\(\dfrac{5.63}{9.208}-\dfrac{5}{3}\)
=\(\dfrac{5.7}{1.208}-\dfrac{5}{3}\)
=\(\dfrac{36}{208}-\dfrac{5}{3}\)
=\(\dfrac{108}{624}-\dfrac{1040}{624}\)
=\(\dfrac{-932}{624}\)
=\(\dfrac{233}{156}\)
còn câu b mk chưa học nên mk chịu
Giải:
5/9:13/7+5/9:13/9 -1 2/3
=5/9.7/13+5/9.9/13-5/3
=5/9.(7/13+9/13)-5/3
=5/9.16/13-5/3
=80/117-5/3
=-115/117
4 2/5 : 0,5% -1 3/7 .14% +(-0,5)
=22/5:1/200-10/7.7/50 +(-1/2)
=880-1/5-1/2
=8793/10
\(=\left(\dfrac{88}{132}-\dfrac{33}{132}+\dfrac{60}{132}\right):\left(\dfrac{55}{132}-\dfrac{132}{132}-\dfrac{84}{132}\right)\)
\(=\dfrac{115}{-161}=-\dfrac{115}{161}\)
Đặt `B=1/5+1/5^{2}+1/5^{3}+...+1/5^{101}`
`<=>5B=1+1/5+1/5^{2}+...+1/5^{100}`
`<=>5B-B=(1+1/5+1/5^{2}+...+1/5^{100})-(1/5+1/5^{2}+...+1/5^{101})`
`<=>5B-B=1+1/5+1/5^{2}+...+1/5^{100}-1/5-1/5^{2}-...-1/5^{101}`
`<=>4B=1-1/5^{101}`
`<=>B=(1-1/5^{101})/4`
`@Shả`
\(A=\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{101}}\)
\(5A=1+\dfrac{1}{5}+...+\dfrac{1}{5^{100}}\)
\(5A-A=1+\dfrac{1}{5}+...+\dfrac{1}{5^{100}}-\dfrac{1}{5}-\dfrac{1}{5^2}-...-\dfrac{1}{5^{101}}=1-\dfrac{1}{5^{101}}\Rightarrow A=\dfrac{1-\dfrac{1}{5^{101}}}{4}\)