K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2018

bn ơi! sai đề thì pải

a: \(C=\dfrac{1}{\sqrt{x}+1}-\dfrac{3}{x\sqrt{x}+1}+\dfrac{1}{x-\sqrt{x}+1}\)

\(=\dfrac{x-\sqrt{x}+1-3+\sqrt{x}+1}{x\sqrt{x}+1}\)

\(=\dfrac{x-1}{x\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{x-\sqrt{x}+1}\)

b: Để C<1 thì C-1<0

\(\Leftrightarrow\dfrac{\sqrt{x}-1-x+\sqrt{x}-1}{x-\sqrt{x}+1}< 0\)

=>\(-x+2\sqrt{x}-2< 0\)(luôn đúng)

 

a: \(A=\left(2\sqrt{5}-3\sqrt{5}+3\sqrt{5}\right)\cdot\sqrt{5}=2\sqrt{5}\cdot\sqrt{5}=10\)

\(B=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)

\(=\sqrt{x}-1+\sqrt{x}=2\sqrt{x}-1\)

b: A=2B

=>\(10=4\sqrt{x}-2\)

=>\(4\sqrt{x}=12\)

=>x=9(nhận)

29 tháng 12 2017

a. ĐKXĐ : x>1.

b. \(A=\left(\dfrac{4}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\dfrac{1}{\sqrt{x}-1}=\left[\dfrac{4}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right].\left(\sqrt{x}-1\right)=\dfrac{4+\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\left(\sqrt{x}-1\right)=\dfrac{4+x}{\sqrt{x}}\)

c. Thay \(x=4-2\sqrt{3}\) vào A, ta có:

\(A=\dfrac{4+4-2\sqrt{3}}{\sqrt{4-2\sqrt{3}}}=\dfrac{8-2\sqrt{3}}{\sqrt{\left(\sqrt{3}-1\right)^2}}=\dfrac{8-2\sqrt{3}}{\sqrt{3}-1}=\dfrac{\left(8-2\sqrt{3}\right)\left(\sqrt{3}+1\right)}{3-1}=\dfrac{8\sqrt{3}+8-6-2\sqrt{3}}{2}=\dfrac{2+6\sqrt{3}}{2}=\dfrac{2\left(1+3\sqrt{3}\right)}{2}=1+3\sqrt{3}\)

Vậy giá trị của A tại \(x=4-2\sqrt{3}\)\(1+3\sqrt{3}\).

19 tháng 1 2019

a ) ĐK : \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)\(P=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^{^2}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\dfrac{x-1-2\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}+3}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{x-2\sqrt{x}+1}{x+4\sqrt{x}+3}\)

28 tháng 1 2019

A có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}\ne0\\\sqrt{x}-1\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\\sqrt{x}\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne1\end{matrix}\right.\)

Ta có:

A = \(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

= \(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}\left(2\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

= \(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}\)

= \(\dfrac{-\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{-\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=-1\)

Kết luận: ...

banhqua

28 tháng 1 2019

ĐK của nó còn là: x ≥ 0 nữa dung doan nhé, mình viết thiếu...

banhqua

15 tháng 6 2017

Lần sau ghi dấu ra xíu nhé :v

a) Đặt \(\sqrt{x}=a\Rightarrow B=\left(\dfrac{a}{a+4}+\dfrac{4}{a-4}\right):\dfrac{a^2+16}{a+2}\)

Quy đồng,rút gọn : \(B=\dfrac{a+2}{a^2-16}\Rightarrow B=\dfrac{\sqrt{x}+2}{x-16}\)

b) \(B\left(A-1\right)=\dfrac{\sqrt{x}+2}{x-16}\left(\dfrac{\sqrt{x}+4}{\sqrt{x}+2}-1\right)=\dfrac{2}{x-16}\)

x - 16 là ước của 2 => \(x\in\left\{14;15;17;18\right\}\)

mới làm quen toán 9 ;v có gì k rõ ae chỉ bảo nhé :))

15 tháng 6 2017

dung ko the ban, sao ngan the ?

Bài 2: 

a) Thay m=3 vào hệ pt, ta được:

\(\left\{{}\begin{matrix}x-2y=7\\2x+y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-4y=14\\2x+y=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-5y=5\\x-2y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=7+2y=5\end{matrix}\right.\)

Vậy: Khi m=3 thì hệ phương trình có nghiệm duy nhất là (x,y)=(5;-1)

a) Ta có: \(B=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\right):\dfrac{\sqrt{x}}{\sqrt{x}-1}\)

\(=\left(\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right):\dfrac{\sqrt{x}}{\sqrt{x}-1}\)

\(=\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}}{\sqrt{x}-1}\)

\(=\dfrac{4\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

\(=\dfrac{4}{\sqrt{x}+1}\)

NV
19 tháng 3 2021

b. Để A và B trái dấu \(\Leftrightarrow AB< 0\)

\(\Leftrightarrow\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right)\left(\dfrac{4}{\sqrt{x}+1}\right)< 0\)

\(\Leftrightarrow\dfrac{4}{\sqrt{x}-1}< 0\Leftrightarrow\sqrt{x}-1< 0\)

\(\Rightarrow0< x< 1\)

NV
13 tháng 1 2019

ĐKXĐ: \(x\ge0;x\ne1\)

Sửa lại đề chỗ \(\dfrac{\sqrt{x-1}}{\sqrt{x}+2}\) thành \(\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)

\(P=\dfrac{3\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}-1}{\sqrt{x}+2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)

\(P=\dfrac{3\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)

\(P=\dfrac{3\sqrt{x}-\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)

\(P=\dfrac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+2}=2-\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)

\(P=\dfrac{2\sqrt{x}+4-\sqrt{x}+1}{\sqrt{x}+2}=\dfrac{\sqrt{x}+5}{\sqrt{x}+2}=1+\dfrac{3}{\sqrt{x}+2}\)

Để P lớn nhất \(\Rightarrow\dfrac{3}{\sqrt{x}+2}\) lớn nhất

\(\sqrt{x}+2\ge2\Rightarrow\dfrac{3}{\sqrt{x}+2}\le\dfrac{3}{2}\)

\(\Rightarrow P_{max}=1+\dfrac{3}{2}=\dfrac{5}{2}\) khi \(\sqrt{x}+2=2\Leftrightarrow x=0\)

7 tháng 10 2018

Khôi Bùi , DƯƠNG PHAN KHÁNH DƯƠNG, Mysterious Person, Phạm Hoàng Giang, Phùng Khánh Linh, TRẦN MINH HOÀNG, Dũng Nguyễn, Nhã Doanh, hattori heiji, ...

a: \(A=\dfrac{\sqrt{x}+x\sqrt{y}+\sqrt{y}+y\sqrt{x}+\sqrt{x}-x\sqrt{y}-\sqrt{y}+y\sqrt{x}}{1-xy}:\dfrac{1-xy+x+y+2xy}{1-xy}\)

\(=\dfrac{2\sqrt{x}+2y\sqrt{x}}{x+y+xy+1}\)

\(=\dfrac{2\sqrt{x}\left(y+1\right)}{\left(x+1\right)\left(y+1\right)}=\dfrac{2\sqrt{x}}{x+1}\)

b: \(x=\dfrac{1}{\sqrt{2}+1}=\sqrt{2}-1\)

\(A=\dfrac{2\sqrt{\sqrt{2}-1}}{\sqrt{2}-1+1}=\sqrt{2\left(\sqrt{2}-1\right)}\)