Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
\(A=\sqrt{x^2+\dfrac{2x^2}{3}}=\sqrt{\dfrac{5x^2}{3}}=\left|\sqrt{\dfrac{5}{3}}x\right|=-x\sqrt{\dfrac{5}{3}}\)
2: \(=\left(\dfrac{\sqrt{100}+\sqrt{40}}{\sqrt{5}+\sqrt{2}}+\sqrt{6}\right)\cdot\dfrac{2\sqrt{5}-\sqrt{6}}{2}\)
\(=\dfrac{\left(2\sqrt{5}+\sqrt{6}\right)\left(2\sqrt{5}-\sqrt{6}\right)}{2}\)
\(=\dfrac{20-6}{2}=7\)
Câu 1,2 bạn đã đăng và có lời giải rồi
Câu 3:
\(=\frac{(\sqrt{3})^2+(2\sqrt{5})^2-2.\sqrt{3}.2\sqrt{5}}{\sqrt{2}(\sqrt{3}-2\sqrt{5})}=\frac{(\sqrt{3}-2\sqrt{5})^2}{\sqrt{2}(\sqrt{3}-2\sqrt{5})}=\frac{\sqrt{3}-2\sqrt{5}}{\sqrt{2}}\)
a) \(5\sqrt{\dfrac{1}{5}}+\dfrac{1}{3}\sqrt{45}+\dfrac{5-\sqrt{5}}{\sqrt{5}}=\sqrt{5}+\sqrt{5}+\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}}=\sqrt{5}+\sqrt{5}+\sqrt{5}-1=-1+3\sqrt{5}\)
b) \(\sqrt{7-4\sqrt{3}}+\sqrt{\left(1+\sqrt{3}\right)^2}=\sqrt{\left(2-\sqrt{3}\right)^2}+1+\sqrt{3}=2-\sqrt{3}+1+\sqrt{3}=3\)
a: \(5\sqrt{\dfrac{1}{5}}+\dfrac{1}{3}\sqrt{45}+\dfrac{5-\sqrt{5}}{\sqrt{5}}\)
\(=\sqrt{5}+\sqrt{5}+\sqrt{5}-1\)
\(=3\sqrt{5}-1\)
b: \(\sqrt{7-4\sqrt{3}}+\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=2-\sqrt{3}+\sqrt{3}+1\)
=3
\(a,P=\dfrac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{3-\sqrt{x}}\left(x\ge0;x\ne9\right)\\ P=\dfrac{x\sqrt{x}-3-2\left(\sqrt{x}-3\right)^2-\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\\ P=\dfrac{x\sqrt{x}-3-2x+12\sqrt{x}-18-x-4\sqrt{x}-3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\\ P=\dfrac{x\sqrt{x}-3x+8\sqrt{x}-24}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\\ P=\dfrac{\left(x+8\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{x+8}{\sqrt{x}+1}\)
\(b,x=14-6\sqrt{5}=\left(3-\sqrt{5}\right)^2\)
Thay vào P:
\(P=\dfrac{14-6\sqrt{5}+8}{\sqrt{\left(3-\sqrt{5}\right)^2}+1}=\dfrac{22-6\sqrt{5}}{4-\sqrt{5}}=\dfrac{\left(4+\sqrt{5}\right)\left(22-6\sqrt{5}\right)}{11}=\dfrac{55-2\sqrt{5}}{11}\)
a) \(P=\dfrac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{3-\sqrt{x}}\left(đk:x\ge0,x\ne9\right)\)
\(=\dfrac{x\sqrt{x}-3-2\left(\sqrt{x}-3\right)^2-\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x\sqrt{x}-3-2x+12\sqrt{x}-18-x-4\sqrt{x}-3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-3x+x\sqrt{x}+8\sqrt{x}-24}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{x\left(\sqrt{x}-3\right)+8\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-3\right)\left(x+8\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{x+8}{\sqrt{x}+1}\)
b) \(P=\dfrac{x+8}{\sqrt{x}+1}=\dfrac{14-6\sqrt{5}+8}{\sqrt{14-6\sqrt{5}}+1}=\dfrac{22-6\sqrt{5}}{\sqrt{\left(3-\sqrt{5}\right)^2}+1}=\dfrac{22-6\sqrt{5}}{3-\sqrt{5}+1}=\dfrac{22-6\sqrt{5}}{4-\sqrt{5}}\)
a: Ta có: \(2\sqrt{28}+2\sqrt{63}-3\sqrt{175}+\sqrt{112}-\sqrt{20}\)
\(=4\sqrt{7}+6\sqrt{7}-15\sqrt{7}+4\sqrt{7}-2\sqrt{5}\)
\(=-\sqrt{7}-2\sqrt{5}\)
a) \(\Leftrightarrow A=3\sqrt{2}+10\sqrt{2}-10\sqrt{2}=3\sqrt{2}\)
b) \(\Leftrightarrow B=\sqrt{7-2\sqrt{12}}+\sqrt{12+2\sqrt{27}}=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(3+\sqrt{3}\right)^2}=2-\sqrt{3}+3+\sqrt{3}=5\)
c) \(\Leftrightarrow C=\dfrac{3-\sqrt{5}+3+\sqrt{5}}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}=\dfrac{6}{4}=\dfrac{3}{2}\)
d) \(\Leftrightarrow D=3-\left(-2\right)-5=0\)
`(5sqrt{1/5}+1/2sqrt{20}-5/4sqrt{4/5}+sqrt{5}):2/5
`=(sqrt5+1/2*2sqrt5-sqrt{5/4}+sqrt5):2/5`
`=(sqrt5+sqrt5+sqrt5-sqrt5/2):2/5`
`=(5/2*sqrt5):2/5`
`=25/4sqrt5`
`1/3sqrt{48}+3sqrt{75}-sqrt{27}-10sqrt{1 1/3}`
`=1/3*4sqrt3+3*5sqrt3-3sqrt3-10sqrt{4/3}`
`=4/sqrt3+15sqrt3-3sqrt3-20/sqrt3`
`=12sqrt3-16/sqrt3`
j.
\(J=\left[\frac{1}{\sqrt{(\sqrt{5}-\sqrt{2})^2}}-\frac{\sqrt{2}}{\sqrt{2}(\sqrt{5}+\sqrt{2})}+1\right].\frac{1}{(\sqrt{2}+1)^2}\)
\(=\left(\frac{1}{\sqrt{5}-\sqrt{2}}-\frac{1}{\sqrt{5}+\sqrt{2}}+1\right).\frac{1}{(\sqrt{2}+1)^2}\)
\(=[\frac{\sqrt{5}+\sqrt{2}-(\sqrt{5}-\sqrt{2})}{(\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2})}+1].\frac{1}{(\sqrt{2}+1)^2}=(\frac{2\sqrt{2}}{3}+1).\frac{1}{(\sqrt{2}+1)^2}=\frac{3+2\sqrt{2}}{3}.\frac{1}{3+2\sqrt{2}}=\frac{1}{3}\)
k. Đề sai sai, bạn xem lại
o.
\(O=(4+\sqrt{15})(\sqrt{5}-\sqrt{3}).\sqrt{2}.\sqrt{4-\sqrt{15}}\)
\(=(4+\sqrt{15}(\sqrt{5}-\sqrt{3})\sqrt{8-2\sqrt{15}}=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{(\sqrt{5}-\sqrt{3})^2}\)
\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})(\sqrt{5}-\sqrt{3})=(4+\sqrt{15})(8-2\sqrt{15})\)
\(=2(4+\sqrt{15})(4-\sqrt{15})=2(16-15)=2\)
\(\dfrac{3\sqrt{10}+\sqrt{20}-3\sqrt{6}-\sqrt{12}}{\sqrt{5}+\sqrt{3}}\)
\(=\dfrac{3\sqrt{2}.\sqrt{5}+2\sqrt{5}-3\sqrt{2}.\sqrt{3}-2\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)
\(=\dfrac{\sqrt{5}\left(3\sqrt{2}+2\right)-\sqrt{3}\left(3\sqrt{2}+2\right)}{\sqrt{5}+\sqrt{3}}\)
\(=\dfrac{\left(\sqrt{5}-\sqrt{3}\right)\left(3\sqrt{2}+2\right)}{\sqrt{5}+\sqrt{3}}\)
Bạn coi lại xem dưới mẫu đúng dấu ''+'' không á, phải dấu ''-'' mới rút với tử ở trên được nha.