Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1:nếu x-3<0 <=>A<0
TH2:nếu x-3>0<=>x-3 lớn nhất
Chọn TH1:x-3<0
Để A nhỏ nhất<=>x-3 lớn nhất
Mà x-3<0=>x-3=-1
=>x=2.Khi đó A=-1
Vậy x=2 thì A nhỏ nhất
Lời giải:
a. Với $x$ nguyên, để biểu thức có giá trị nguyên thì $x-1$ là ước của $2$
$\Rightarrow x-1\in\left\{1; -1; 2;-2\right\}$
$\Rightarrow x\in\left\{2; 0; 3; -1\right\}$
b.
$\frac{x-2}{x-1}=\frac{(x-1)-1}{x-1}=1-\frac{1}{x-1}$
Để biểu thức nhận giá trị nguyên thì $\frac{1}{x-1}$ nguyên
$\Rightarrow x-1$ là ước của $1$
$\Rightarrow x-1\in\left\{1; -1\right\}$
$\Rightarrow x\in\left\{2; 0\right\}$
\(\dfrac{x-2}{x-1}=\dfrac{x-1-1}{x-1}=\dfrac{x-1}{x-1}-\dfrac{1}{x-1}=1-\dfrac{1}{x-1}\)
Để nguyên thì \(x-1\in U\left(1\right)=\left\{\pm1\right\}\)
x-1=1 => x=2
x-1=-1 => x=0
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
Lời giải:
$B=\frac{(x+1)+1}{x+1}=1+\frac{1}{x+1}$
Để $B$ nguyên thì $\frac{1}{x+1}$ nguyên.
Với $x$ nguyên, để $\frac{1}{x+1}$ nguyên thì $1\vdots x+1$
$\Rightarrow x+1\in\left\{\pm 1\right\}$
$\Rightarrow x\in\left\{0;-2\right\}$
Với $x$ nguyên, để $\frac{5}{2x+7}$ nguyên thì:
$5\vdots 2x+7$
$\Rightarrow 2x+7\in\left\{\pm 1;\pm 5\right\}$
$\Rightarrow x\in\left\{-3;-4;-1;-6\right\}$
B=\(\dfrac{x+2}{x+1}=1\dfrac{1}{x+1}\)(x khác -1)
=> Để B nguyên thì 1 chia hết cho x+1
=> x+1 ∈Ư(1)={1,-1}
X+1 | 1 | -1 |
x | 0 | -2 |
Vậy để B nguyên thì x∈{0,-2}
C=\(\dfrac{5}{2x+7}\)(x khác -7/2)
Để C nguyên thì 5 chia hết cho 2x+7
=>2x+7∈Ư(5)={1,-1,5,-5}
2x+7 | 1 | -1 | 5 | -5 |
x | -3 | -4 | -1 | -6 |
Để C nguyên thì x∈{-3,-4,-1,-6}
a, \(x-1\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
x-1 | 1 | -1 | 3 | -3 |
x | 2 | 0 | 4 | -2 |
b, \(2x-1\inƯ\left(-4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
2x-1 | 1 | -1 | 2 | -2 | 4 | -4 |
x | 1 | 0 | loại | loại | loại | loại |
c, \(\dfrac{3\left(x-1\right)+10}{x-1}=3+\dfrac{10}{x-1}\Rightarrow x-1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
x-1 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
x | 2 | 0 | 3 | -1 | 6 | -4 | 11 | -9 |
d, \(\dfrac{4\left(x-3\right)+3}{-\left(x-3\right)}=-4-\dfrac{3}{x+3}\Rightarrow x+3\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
x+3 | 1 | -1 | 3 | -3 |
x | -2 | -4 | 0 | -6 |
Vì x nguyên nên 4x + 1 và 6x - 3 nguyên
Để \(A=\dfrac{4x+1}{6x-3}\) nguyên thì ( 4x + 1 ) ⋮ ( 6x - 3 )
Ta có [ 3( 4x + 1 )] ⋮ ( 6x - 3 ) hay ( 12x + 3 ) ⋮ ( 6x - 3 )
[ 2( 6x - 3 )] ⋮ ( 6x - 3 ) hay ( 12x - 6 ) ⋮ ( 6x - 3 )
⇒ [( 12x + 3 ) - ( 12x - 6 )] ⋮ ( 6x - 3 )
( 12x + 3 - 12x + 6 ) ⋮ ( 6x - 3 ) ⇒ 9 ⋮ ( 6x - 3 ) hay ( 6x - 3 ) ϵ Ư( 9 )
Ư( 9 ) = { \(\pm1;\pm3;\pm9\) }
Lập bảng giá trị
6x - 3 | 1 | 9 | -1 | -9 | 3 | -3 |
x | \(\dfrac{2}{3}\) \(\notin\) Z ( loại ) | 2 | \(\dfrac{1}{3}\notin\) Z ( loại ) | -1 | 1 | 0 |
Vậy x ϵ { 2; -1; 1; 0 } để \(A=\dfrac{4x+1}{6x-3}\) nguyên
Vì x nguyên nên 4x + 1 và 6x - 3 nguyên
Để nguyên thì ( 4x + 1 ) ⋮ ( 6x - 3 )
Ta có [ 3( 4x + 1 )] ⋮ ( 6x - 3 ) hay ( 12x + 3 ) ⋮ ( 6x - 3 )
[ 2( 6x - 3 )] ⋮ ( 6x - 3 ) hay ( 12x - 6 ) ⋮ ( 6x - 3 )
⇒ [( 12x + 3 ) - ( 12x - 6 )] ⋮ ( 6x - 3 )
( 12x + 3 - 12x + 6 ) ⋮ ( 6x - 3 ) ⇒ 9 ⋮ ( 6x - 3 ) hay ( 6x - 3 ) ϵ Ư( 9 )
Ư( 9 ) = { }
Lập bảng giá trị
6x - 3 | 1 | 9 | -1 | -9 | 3 | -3 |
x | Z ( loại ) | 2 | Z ( loại ) | -1 | 1 | 0 |
Vậy x ϵ { 2; -1; 1; 0 } để nguyên
nhớ đánh giá nhé >-<
đk: x #1;
P = 1 + 9/x-1.
Vậy x nguyên để x- 1 là ước của 9
Ư của 9 là: -9; -3; -1; 0; 1; 3 và 9
Từ đó tìm được x
\(A=\dfrac{-\left(6-2n\right)+5}{3-n}=\dfrac{-2\left(3-n\right)+5}{3-n}=-2+\dfrac{5}{3-n}\)
Để A nguyên => 3-n = Ước của 5
\(\Rightarrow3-n=\left\{-5;-1;1;5\right\}\Rightarrow n=\left\{8;4;2;-2\right\}\)
ĐKXĐ: x<>3
Để \(\dfrac{4x-1}{3-x}\) nguyên thì \(4x-1⋮3-x\)
=>\(4x-1⋮x-3\)
=>\(4x-12+11⋮x-3\)
=>\(11⋮x-3\)
=>\(x-3\in\left\{1;-1;11;-11\right\}\)
=>\(x\in\left\{4;2;14;-8\right\}\)
giúp mikk please