Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(a-11b+3c⋮17\)
=> \(19\left(a-11b+3c\right)⋮17\)
=> \(19a-209b+57c⋮17\)
=> ( 17a - 204b + 51c ) + ( 2a - 5b + 6c ) \(⋮\)17
=> 2a - 5b + 6c \(⋮\)17 ( do 17a - 204b + 51c \(⋮\)17 ) ( đpcm )
Ta thấy tổng của 3 chữ số liên tiếp bắt đầu từ số chẵn thì luôn luôn có các chữ số tận cùng là 1;3;5;7;9 (số lẻ) mà tổng này lại chia hết cho 5 nên suy ra chữ số hàng đơn vị là 5.
Khi đã có chữ số hàng đơn vị thì ta có thể suy ra tiếp chữ số hàng trăm sẽ là chữ số 4 để tổng của 5 và 4 chia hết cho 9.
Ta thấy chữ số hàng chục là số chẵn nhưng tổng ở đây là 3 chữ số liên tiếp nên khi tổng trừ 3 thì phải chia hết cho 3 nhằm để tìm số bé. Như vậy ta dùng phương pháp loại trừ ta thực hiện phép tính sau:
(4a5 - 3 ) chia hết cho 3
Ta thấy được chữ số 0 và chữ và chữ số 6 có thể thay thế vào a. Ta có 2 dãy số tự nhiên liên tiếp là:
Dãy 1 : 134;135;136
Dãy 2 : 154;155;156
Nhưng để thoả mãn điều kiện của đề bài là phải có 1 số trong dãy chia hết cho 9 vì vậy ta sẽ có dãy số đúng là dãy 1 vì số 135 chia hết cho 9.
Ta đã biết, số chia hết cho 3 có tổng chia hết cho 3
Từ số : 102;105;108 ... 999
Khoảng cách các số là : 105 - 102 = 3 ( đơn vị )
Vậy, có tất cả các số chia hết cho 3 là :
( 999 - 102 ) : 3 + 1 = 300 ( số )
Đáp số : 300 số
Từ phép tính số hàng chục: B+5 có tận cùng là 2 => Phép cộng này có nhớ 1 sang hàng trăm.
Suy ra phép cộng hàng trăm A+2=5 có nhớ 1 nên A=2 và phép cộng này không nhớ nên:
Phép cộng hàng nghìn 8+C=D thì C=1 và D=9
Như vậy phép cộng hàng đơn vị: 2+9 = 1 nhớ 1.
Trở lại phép cộng hàng chục. B+5=2 có nhớ 1 ở hàng đơn vị nên B=6.
Số ABCD là: 2619.
a) * = 5
b) * = 6
c) Ta có :
abcd + abc = 3576
=> 11.abc + d = 3576
=> abcd = 3251