Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có \(\frac{1}{k\left(k+1\right)}=\frac{\left(k+1\right)-k}{k\left(k+1\right)}=\frac{k+1}{k\left(k+1\right)}-\frac{k}{k\left(k+1\right)}=\frac{1}{k}-\frac{1}{k+1}\)
b, Ta có: \(\frac{1}{1.2}=\frac{1}{1}-\frac{1}{2};\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3};...;\frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)
Do đó \(A=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+...+\left(\frac{1}{99}-\frac{1}{100}\right)=1-\frac{1}{100}=\frac{99}{100}\)
A = \(\frac{1}{1}\)-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+... + \(\frac{1}{99}\)-\(\frac{1}{100}\)
A = \(\frac{1}{1}\)-\(\frac{1}{100}\)
ai tốt bụng thì tk cho mk nha, mk đg âm điểm đây
A = \(\frac{99}{100}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{2019.2020}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..-\frac{1}{2020}=1-\frac{1}{2020}=\frac{2019}{2020}\)
\(\Rightarrow a=\frac{2020}{2019}\)
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{5\cdot6}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{5}-\frac{1}{6}\)
\(A=1-\frac{1}{6}\)
\(A=\frac{5}{6}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{5}-\frac{1}{6}\)
\(A=1-\frac{1}{6}\)
\(A=\frac{5}{6}\)
\(B=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{100}{99}\)
\(B=\frac{100}{2}\)
\(A=-\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-...-\frac{1}{\left(n-1\right)n}\)
\(=-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n-1.n}\right)\)
\(=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)
\(=-\left(1-\frac{1}{n}\right)\)
\(=-\frac{n-1}{n}\)
\(A=-\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-...-\frac{1}{\left(n-1\right).n}\)
\(A=-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\right)\)
\(A=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{\left(n-1\right)}-\frac{1}{n}\right)\)
\(\Rightarrow A=-\left(1-\frac{1}{n}\right)\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x(x+1)}=\frac{2019}{2020}\)
\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2019}{2020}\)
\(\Rightarrow1-\frac{1}{x+1}=\frac{2019}{2020}\)
\(\Rightarrow\frac{1}{x+1}=1-\frac{2019}{2020}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2020}\)
\(\Rightarrow x+1=2020\Leftrightarrow x=2019\)
Vậy x = 2019
\(\text{Đề }\Leftrightarrow\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right).\left(x-1\right)=x-\frac{1}{3}\)
=> \(\left(1-\frac{1}{10}\right).\left(x-1\right)=x-\frac{1}{3}\)
=> \(\frac{9}{10}.\left(x-1\right)=x-\frac{1}{3}\)
=> \(\frac{9x}{10}-\frac{9}{10}=\frac{3x-1}{3}\)
=> \(\frac{27x}{30}-\frac{27}{30}=\frac{10.\left(3x-1\right)}{30}\)
=> 27x - 27 = 30x - 10
=> 27x - 30x = -10 + 27
=> -3x = 17
=> x = -17/3.
\(\frac{1}{k\left(k+1\right)}=\frac{1}{k}-\frac{1}{k+1}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{79.80}=\frac{79}{80}\)
#)Giải :
b, Ta xét \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}...+\frac{1}{79.80}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{79}-\frac{1}{80}\)
\(=1-\frac{1}{80}\)
\(=\frac{79}{80}=\frac{ }{80}\)
Vậy ........................................