K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2017

Điều kiện xác định x + 2 ≥ 0 x ≠ 0 x 2 + 3 x − 4 ≠ 0 ⇔ x ≥ − 2 x ≠ 1 x ≠ 0 x ≠ − 4 ⇔ x ∈ [ - 2 ; + ∞ ) \   0 ; 1

Đáp án cần chọn là: C

Phần 1: Đại sốCâu 1 (2đ): Xét dấu các biểu thức sau:a.f x x     3 4; c.    2f x x x x     1 2 5 2 .b. 2f x x x    9 6 1; d.  22 52xf xx x.Câu 2 (4đ): Giải các bất phương trình sau:a.  23 4 4 0 x x   ; c.  21 2 503x xx .b. 22 4 4 0 x x x   ; d. 225 2 302x xx x.Câu 3 (1đ): Xác định miền nghiệm của bất phương...
Đọc tiếp

Phần 1: Đại số
Câu 1 (2đ): Xét dấu các biểu thức sau:
a.
f x x     3 4

; c.

    

2

f x x x x     1 2 5 2 .

b.
 
2
f x x x    9 6 1

; d.

  2
2 5
2
x

f x
x x



.

Câu 2 (4đ): Giải các bất phương trình sau:
a.
  
2
3 4 4 0 x x   

; c.

  
2
1 2 5
0

3
x x
x
 

.

b.
 
2
2 4 4 0 x x x   

; d.

 
2
2
5 2 3
0
2
x x
x x


.

Câu 3 (1đ): Xác định miền nghiệm của bất phương trình sau:

2 3 1 0. x y   

Phần 2: Hình học
Câu 1 (2đ): Cho tam giác ABC biết

A B và C 1; 4 , 3; 1 6; 2 .       
a) Lập phương trình tham số đường thẳng chứa cạnh BC của tam giác.
b) Lập phương trình tổng quát đường cao hạ từ A của tam giác ABC.
c) Lập phương trình tổng quát đường thẳng đi qua B và song song với đường thẳng
d x y : 3 1 0.   
Câu 2 (1đ): Xét vị trí tương đối và tìm giao điểm (nếu có) của 2 đường thẳng sau:
1
d : 2 3 0     x y

2
d : 2 3 0.

0
Phần I. Trắc nghiệm (2 điểm)Câu 1: Điều kiện xác định của biểu thức  là:A.x ≠ 0    B.x ≥ 1    C.x ≥ 1 hoặc x < 0    D.0 < x ≤ 1Câu 2: Đường thẳng 2x + 3y = 5 đi qua điểm nào trong các điểm sau đâyA. ( 1; -1)    B. ( 2; -3)    C. ( -1; 1)     D. (- 2; 3)Câu 3: Cho phương trình x – 2y = 2 (1). Phương trình nào trong các phương trình sau đây kết hợp với (1) để được phương trình vô số nghiệmA.x + y = -1    B. x - y = -1C.2x - 3y =...
Đọc tiếp

Phần I. Trắc nghiệm (2 điểm)

Câu 1: Điều kiện xác định của biểu thức Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án là:

A.x ≠ 0    B.x ≥ 1    C.x ≥ 1 hoặc x < 0    D.0 < x ≤ 1

Câu 2: Đường thẳng 2x + 3y = 5 đi qua điểm nào trong các điểm sau đây

A. ( 1; -1)    B. ( 2; -3)    C. ( -1; 1)     D. (- 2; 3)

Câu 3: Cho phương trình x – 2y = 2 (1). Phương trình nào trong các phương trình sau đây kết hợp với (1) để được phương trình vô số nghiệm

A.Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp ánx + y = -1    B. Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp ánx - y = -1

C.2x - 3y = 3   D.2x - 4y = -4

Câu 4: Tọa độ giao điểm của (P) y = Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án x2 và đường thẳng (d) y = Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án + 3

A. (2; 2)   B. ( 2; 2) và (0; 0)

C.(-3; Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án)    D.(2; 2) và (-3; Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án)

Câu 5: Giá trị của k để phương trình x2 + 3x + 2k = 0 có 2 nghiệm trái dấu là:

A. k > 0   B. k < 0   C. k > 2    D. k < 2

Câu 6: Cho tam giác ABC vuông tại A có AB : AC = 3 : 4 và đường cao AH bằng 9 cm. Khi đó độ dài đoạn thẳng HC bằng:

A. 12 cm    B. 9 cm     C. 6 cm    D. 15 cm

Câu 7: Cho hai đường tròn (O; 3cm) và (O; 4cm) có OO' = 5 cm. Vị trí tương đối của 2 đường tròn là:

A. Hai đường tròn tiếp xúc ngoài với nhau

B. Hai đường tròn tiếp xúc trong với nhau

C. Hai đường tròn không giao nhau

D. Hai đường tròn cắt nhau

Câu 8: Thể tích hình cầu thay đổi như thế nào nếu bán kính hình cầu tăng gấp 2 lần

A. Tăng gấp 16 lần     B. Tăng gấp 8 lần

C. Tăng gấp 4 lần     D. Tăng gấp 2 lần

1
29 tháng 11 2021

GIÚP EM VỚI

Câu 1:Ta có:

a) \(\left|x-3\right|=5\Leftrightarrow\left[{}\begin{matrix}x-3=5\\x-3=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)

b) \(\left|2x+3\right|=2.\left|4-x\right|\)

+)Xét \(\left\{{}\begin{matrix}2x+3\ge0\\4-x\ge0\end{matrix}\right.\) \(\Leftrightarrow\dfrac{-3}{2}\le x\le4\)

Khi đó \(2x+3=2\left(4-x\right)\Leftrightarrow2x+3=8-2x\Leftrightarrow4x=5\Leftrightarrow x=\dfrac{5}{4}\left(tm\right)\)

+) Xét \(\left\{{}\begin{matrix}2x+3\ge0\\4-x\le0\end{matrix}\right.\) \(\Leftrightarrow x\ge4\)

Khi đó: \(2x+3=2\left(x-4\right)=2x-8\Leftrightarrow0x=-11\left(vl\right)\)

+) Xét \(\left\{{}\begin{matrix}2x+3\le0\\4-x\ge0\end{matrix}\right.\) \(\Leftrightarrow x\le\dfrac{-3}{2}\)

Khi đó: \(-\left(2x+3\right)=2.\left(4-x\right)\Leftrightarrow-2x-3=8-2x\left(vl\right)\)

+)Xét \(\left\{{}\begin{matrix}2x+3\le0\\4-x\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{-3}{2}\\x\ge4\end{matrix}\right.\) \(\left(vl\right)\)

Vậy...

c) ĐKXĐ : \(3-x\ge0\Leftrightarrow x\le3\)

+)Xét \(x^{^2}-3x+1\ge0\)

\(\Leftrightarrow x^2-3x+1=3-x\Leftrightarrow x^2-2x-2=0\)

\(\Leftrightarrow x^2-2x+1=3\Leftrightarrow\left(x-1\right)^2=3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=\sqrt{3}\\x-1=-\sqrt{3}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1+\sqrt{3}\left(tm\right)\\x=1-\sqrt{3}\left(tm\right)\end{matrix}\right.\)

+)Xét \(x^{^2}-3x+1\le0\)

\(\Leftrightarrow-\left(x^2-3x+1\right)=3-x\)

\(\Leftrightarrow x^2-3x+1=x-3\Leftrightarrow x^2-4x+4=0\)

\(\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\left(tm\right)\)

Vậy...

Câu 2:

 Ta có:

Phương trình \(\left(x+3\right)\left(x^2-2x+m-1\right)=0\) có một nghiệm là \(x=-3\)

\(\Rightarrow\)Phương trình \(\left(x+3\right)\left(x^2-2x+m-1\right)=0\) có ba nghiệm phân biệt khi và chỉ khi \(x^2-2x+m-1=0\) có 2 nghiệm phân biệt và khác \(-3\)

Ta có:  \(x^2-2x+m-1=0\) có 2 nghiệm phân biệt khi và chỉ khi \(\text{△}>0\Leftrightarrow8-4m>0\Leftrightarrow m< 2\)

 Gọi \(x_1\) và \(x_2\) là 2 nghiệm của phương trình \(x^2-2x+m-1=0\).Theo hệ thức Vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{-2}{1}=2\\x_1x_2=\dfrac{m-1}{1}=m-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1=2-x_2\\\left(2-x_2\right).x_2=m-1\end{matrix}\right.\)

Nếu \(x_2\ne-3\) thì \(m-1\ne-15\Leftrightarrow m\ne-14\).

Do vai trò của  \(x_1\) và \(x_2\) là như nhau nên  \(x^2-2x+m-1=0\) có 2 nghiệm phân biệt và khác \(-3\) khi và chỉ khi: \(\left\{{}\begin{matrix}m< 2\\m\ne-14\end{matrix}\right.\)

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) \(2{x^2} + 3x + 1 \ge 0\)

Tam thức bậc hai \(f\left( x \right) = 2{x^2} + 3x + 1\) có 2 nghiệm phân biệt \(x =  - 1,x = \frac{{ - 1}}{2}\)

hệ số \(a = 2 > 0\)

Ta có bảng xét dấu f(x) như sau:

Từ bảng xét dấu ta thấy \(f\left( x \right) \ge 0 \Leftrightarrow \left[ \begin{array}{l}x \le  - 1\\x \ge  - \frac{1}{2}\end{array} \right.\)

Vậy tập nghiệm của bất phương trình là \(\left( { - \infty ; - 1} \right] \cup \left[ { - \frac{1}{2}; + \infty } \right)\)

b) \( - 3{x^2} + x + 1 > 0\)

Tam thức bậc hai \(f\left( x \right) =  - 3{x^2} + x + 1\) có 2 nghiệm phân biệt \(x = \frac{{1 - \sqrt {13} }}{6},x = \frac{{1 + \sqrt {13} }}{6}\)

Hệ số \(a =  - 3 < 0\)

Ta có bảng xét dấu f(x) như sau:

Từ bảng xét dấu ta thấy \(f\left( x \right) > 0\)\( \Leftrightarrow \frac{{1 - \sqrt {13} }}{6} < x < \frac{{1 + \sqrt {13} }}{6}\)

Vậy tập nghiệm của bất phương trình là \(\left( {\frac{{1 - \sqrt {13} }}{6};\frac{{1 + \sqrt {13} }}{6}} \right)\)

c) \(4{x^2} + 4x + 1 \ge 0\)

Tam thức bậc hai \(f\left( x \right) = 4{x^2} + 4x + 1\) có nghiệm duy nhất \(x = \frac{{ - 1}}{2}\)

hệ số \(a = 4 > 0\)

Ta có bảng xét dấu f(x) như sau:

Từ bảng xét dấu ta thấy \(f\left( x \right) \ge 0 \Leftrightarrow x \in \mathbb{R}\)

Vậy tập nghiệm của bất phương trình là \(\mathbb{R}\)

d) \( - 16{x^2} + 8x - 1 < 0\)

Tam thức bậc hai \(f\left( x \right) =  - 16{x^2} + 8x - 1\) có nghiệm duy nhất \(x = \frac{1}{4}\)

hệ số \(a =  - 16 < 0\)

Ta có bảng xét dấu f(x) như sau:

Từ bảng xét dấu ta thấy \(f\left( x \right) < 0 \Leftrightarrow x \ne \frac{1}{4}\)

Vậy tập nghiệm của bất phương trình là \(\mathbb{R}\backslash \left\{ {\frac{1}{4}} \right\}\)

e) \(2{x^2} + x + 3 < 0\)

Ta có \(\Delta  = {1^2} - 4.2.3 =  - 23 < 0\) và có \(a = 2 > 0\)

Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho \(2{x^2} + x + 3\) mang dấu “-” là \(\emptyset \)

Vậy tập nghiệm của bất phương trình \(2{x^2} + x + 3 < 0\) là \(\emptyset \)

g) \( - 3{x^2} + 4x - 5 < 0\)

Tam thức bậc hai \(f\left( x \right) =  - 3{x^2} + 4x - 5\) có \(\Delta ' = {2^2} - \left( { - 3} \right).\left( { - 5} \right) =  - 11 < 0\) và có \(a =  - 3 < 0\)

Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho \( - 3{x^2} + 4x - 5\) mang dấu “-” là \(\mathbb{R}\)

Vậy tập nghiệm của bất phương trình \( - 3{x^2} + 4x - 5 < 0\) là \(\mathbb{R}\)

2 tháng 12 2021

B

Chọn B

9 tháng 12 2018

b,-2<x≤3/2

9 tháng 12 2018

S k phải câu c z

Trắc nghiệm (4 điểm) Câu 1: Bất phương trình 2x  3  2x  6  3x 1 xác định khi nào? x1 x1  x  1 A. x1  x   1 B. x1  x  1 C. x1  x   1 D. x1  3   3 Câu 2: Tập nghiệm của bất phương trình 2x 13x  2  0 là A. B.  3 D. 2;  3 A.;21; B. 2;1 C. 1;2 ...
Đọc tiếp

Trắc nghiệm (4 điểm)
Câu 1: Bất phương trình 2x  3  2x  6  3x 1 xác định khi nào?
x1 x1
 x  1 A. x1
 x   1 B. x1
 x  1 C. x1
 x   1 D. x1
 3 
 3
Câu 2: Tập nghiệm của bất phương trình 2x 13x  2  0 là
A. B.
 3 D. 2;
 3 A.;21; B. 2;1 C. 1;2
323223 3 Câu 3: Nhị thức f x   2x  5 có bảng xét dấu như thế nào?
C.
Câu 4: Tập nghiệm của bất phương trình x 1  1 là
D.
x3
A. B.3; C. ;5 D. 
Câu5:Bấtphươngtrình 2xm2 10 cótậpnghiệmtrongkhoảng ;4 khi và chỉ khi:
A. m3 B. 3m3 C. m3 Câu 6: Điều kiện để tam thức bâc hai f x  ax2  bx  c
A. a0 B. a0 C. a0   0   0   0
D. m 3
a  0 lớn hơn 0 với mọi x là:
D. a0   0
Câu7:Bấtphươngtrình 2x2 5x30 cótậpnghiệmlà
D. ;31;   
A. 1;3 B. ;31; C.;13; 2 2   2
2 
Câu 8: Tập nghiệm của bất phương trình A. (;2](1;1)[2;)
C. (;2][2;)
Câu 9: Tập nghiệm của bất phương trình
3  1 là x2 1
B. [2;1)(1;2) D. (-1; 1)
2xx2 1
3  2x  x2  0 là
1
Mã đề 101
A. (3;1][0;1)(1;) B. (3;1][0;) C.(-;-3)[-1;0](1;+ ) D.(-3;-1)(1;+ )
Câu 10: Tổng của các nghiệm nguyên của hệ bất phương trình x  5  0 là: x50
A. 0 B. 5 C. 15 D. Không xác định được II. Tự luận (6 điểm)
Câu 1: Giải các bất phương trình sau
a) (3x2 – 10x + 3)(4x – 5) > 0
b) 3x47  4x47 3x 1 2x 1
2x3 x1
d) x27x632x
Câu 2. Tìm giá trị của m để các bất phương trình sau vô nghiệm.
(m–3)x2 +(m+2)x–4>0

1
21 tháng 4 2020

?

22 tháng 12 2021

a: Để phương trình có hai nghiệm trái dấu thì m+2<0

hay m<-2

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a)      \(2{x^2} - 3x + 1 > 0\)

Tam thức \(f\left( x \right) = 2{x^2} - 3x + 1\) có \(a + b + c = 2 - 3 + 1 = 0\) nên hai nghiệm phân biệt \({x_1} = 1\) và \({x_2} = \frac{1}{2}.\)

Mặt khác \(a = 2 > 0,\) do đó ta có bảng xét dấu sau:

Tập nghiệm của bất phương trình là: \(S= \left( { - \infty ;\frac{1}{2}} \right) \cup \left( {1; + \infty } \right).\)

b)     \({x^2} + 5x + 4 < 0\)

Tam thức \(f\left( x \right) = {x^2} + 5x + 4\) có \(a - b + c = 1 - 5 + 4 = 0\) nên phương trình có hai nghiệm phân biệt \(x =  - 1\) và \(x =  - 4.\)

Mặt khác \(a = 1 > 0,\) do đó ta có bảng xét dấu sau:

Tập nghiệm của bất phương trình là: \(S = \left( { - 4; - 1} \right).\)

c)      \( - 3{x^2} + 12x - 12 \ge 0\)

Tam thức \(f\left( x \right) =  - 3{x^2} + 12x - 12 =  - 3\left( {{x^2} - 4x + 4} \right) =  - 3{\left( {x - 2} \right)^2} \le 0\)

Do đó 

\( - 3{x^2} + 12x - 12 \ge 0 \Leftrightarrow  - 3{x^2} + 12x - 12 = 0 \Leftrightarrow  - 3{\left( {x - 2} \right)^2} = 0 \Leftrightarrow x = 2.\)

Tập nghiệm của bất phương trình là: \(S = \left( { 2} \right).\)

d)     \(2{x^2} + 2x + 1 < 0.\)

Tam thức \(f\left( x \right) = 2{x^2} + 2x + 1\) có \(\Delta  =  - 1 < 0,\) hệ số \(a = 2 > 0\) nên \(f\left( x \right)\) luôn dướng với mọi \(x,\) tức là \(2{x^2} + 2x + 1 > 0\) với mọi \(x \in \mathbb{R}.\)

\( \Rightarrow \) bất phương trình vô nghiệm

31 tháng 3 2018

Phương án A có nhiều giá trị quá, thay vào phương trình mất nhiều thời gian, nên ta xét các phương trình còn lại.

Với phương án B, khi thay x = 0 vào phương trình thì hai vế đều bằng 4 nên x = 0 là một nghiệm. Tuy nhiên khi thay giá trị x = 4 vào phương trình thì vế trái bằng 0, còn vế phải bằng 16. Vậy phương án B và phương án C đều bị loại. Với phương án D, giá trị x = 1 cũng không phải là nghiệm của phương trình, nên phương án D bị loại.

Đáp án: A