Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Định Nghĩa:
Căn bậc hai của 1 số a không âm là số x sao cho: \(x^2=a\)
b, Tính Chất:
- Nếu a = b thì \(a=\sqrt{b}\)
- Nếu a < b thì \(\sqrt{a}< \sqrt{b}\)
Khái niệm về căn bậc hai.
- Căn bậc hai của một số a không âm là x sao cho x2 = a
Do: 32 = (−3)2 = 9
- Người ta chứng minh được rằng số dương a có đúng 2 căn bậc hai.
Một số dương kí hiệu là A2 Một số âm kí hiệu là −A2Số dương chỉ có 1 căn bậc hai là số 0Viết a) Định nghĩa: Căn bậc hai của một số a không âm là số x sao cho
b) Tính chất: Với hai số dương bất kì a và b.
- Nếu a=b thì ;
- Nếu a < b thì
Khái niệm của căn bậc hai như sau:
-Căn bậc hai của một số a ko âm là x sao cho x2 bằng a
CHÚC BẠN HOC TỐT NHA.OK
1) Tỉ lệ thức là đẳng thức của hai tỉ số : \(\frac{a}{b}=\frac{c}{d}\)
Tính chất 1: Nếu thì a.d = b.c
Tính chất 2: Nếu a.d = b.c , a, b, c,d ≠ 0 thì ta có các Tỉ lệ thức :
; ; ;
2) Tập hợp các số viết được dưới dạng số thập phân vô hạn KHÔNG tuần hoàn. Và kí hiệu là I.
VD: 0,1010010001000010000010000001...Số = 1,414213...Số 3) Tập hợp các số hữu tỉ và vô tỉ, kí hiệu là R.Trục số thực là mỗi số thực được biểu diễn trên trục số 4) căn bậc hai của một số không âm a là một số x sao cho x2 = atỉ lệ thức là 1 đẳng thức
số vô tỉ là số thập phân vô hạn không tuần hoàn vd:1,4582176...
số thực gồm số hữu tỉ và số vô tỉ
căn bậc hai của 1 số không âm là x sao cho x2 = a
còn lại tự làm
căn bậc 2 của số a ko âm là x sao cho x^2=a
trong sgk có mà
căn bật hai của một số a ko âm là số b sao cho b\(^2\)= a
ĐỊNH NGHĨA
Với số dương a, số √a được gọi là căn bậc hai số học của a.
Số 0 cũng được gọi là căn bậc hai số học của 0.
Chú ý. Với a ≥ 0, ta có:
Nếu x = √a thì x ≥ 0 và x2 = a;
Nếu x ≥ 0 và x2 = a thì x = √a.
Ta viết
x = √a <=> x ≥ 0 và x2 = a
2. So sánh các căn bậc hai số học
Ta đã biết:
Với hai số a và b không âm, nếu a < b thì √a < √b.
Ta có thể chứng minh được:
Với hai số a và b không âm, nếu √a < √b thì a < b.
Như vậy ta có định lí sau đây.
ĐỊNH LÍ
Với hai số a và b không âm, ta có:
a < b <=> √a < √b.