Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(C_2H_2+2Br_2\rightarrow C_2H_2Br_4\)
\(n_{Br_2}=\dfrac{16}{160}=0,1\left(mol\right)\)
Theo PT: \(n_{C_2H_2}=\dfrac{1}{2}n_{Br_2}=0,05\left(mol\right)\)
\(\Rightarrow V_{C_2H_2}=0,05.22,4=1,12\left(l\right)\)
\(\Rightarrow V_{CH_4}=3,36-1,12=2,24\left(l\right)\)
b, \(CH_4+2O_2\underrightarrow{t^o}CO_2+2H_2O\)
\(2C_2H_2+5O_2\underrightarrow{t^o}4CO_2+2H_2O\)
\(n_{CH_4}=\dfrac{2,24}{22,4}=0,1\left(mol\right)\)
Theo PT: \(n_{O_2}=2n_{CH_4}+\dfrac{5}{2}n_{C_2H_2}=0,325\left(mol\right)\)
\(\Rightarrow V_{O_2}=0,325.22,4=7,28\left(l\right)\Rightarrow V_{kk}=5V_{O_2}=36,4\left(l\right)\)
Theo PT: \(n_{CO_2}=n_{CH_4}+2n_{C_2H_2}=0,2\left(mol\right)\)
\(CO_2+Ca\left(OH\right)_2\rightarrow CaCO_{3\downarrow}+H_2O\)
\(\Rightarrow n_{CaCO_3}=n_{CO_2}=0,2\left(mol\right)\Rightarrow m_{CaCO_3}=0,2.100=20\left(g\right)\)
\(Đặt:n_{CH_4}=a\left(mol\right),n_{C_2H_2}=b\left(mol\right)\)
\(n_{hh}=a+b=0.35\left(mol\right)\left(1\right)\)
\(BTC:\)
\(a+2b=0.6\)
\(a=1\)
\(b=0.25\)
\(\%CH_4=\dfrac{0.1}{0.35}\cdot100\%=28.57\%\)
\(\%C_2H_2=71.43\%\)
\(\left\{{}\begin{matrix}n_{CH_4}=x\left(mol\right)\\n_{C_2H_2}=y\left(mol\right)\end{matrix}\right.\)⇒ x + y = \(\dfrac{7,84}{22,4} = 0,35(mol)\)
\(CH_4 + 2O_2 \xrightarrow{t^o} CO_2 + 2H_2O\\ C_2H_2 + \dfrac{5}{2}O_2 \xrightarrow{t^o} 2CO_2 + H_2O\\ CO_2 + Ca(OH)_2 \to CaCO_3 + H_2O\)
Theo PTHH : x + 2y = \(\dfrac{60}{100} = 0,6(2)\)
Từ (1)(2) suy ra x = 0,1 ; y = 0,25
Vậy :
\(\%V_{CH_4} = \dfrac{0,1}{0,35}.100\% = 28,57\%\\ \%V_{C_2H_2} = 100\% - 28,57\% = 71,43\%\)
a)\(n_{CaCO_3}=\dfrac{2}{100}=0,02mol\)
\(CO_2+Ca\left(OH\right)_2\rightarrow CaCO_3+H_2O\)
0,02 0,02
\(CH_4+2O_2\rightarrow CO_2+2H_2O\)
0,02 0,02
\(V_{CH_4}=0,02\cdot22,4=0,448l\)
b) \(V_{CH_4}=90\%V_{tựnhiên}\)
\(\Rightarrow V_{tựnhiên}=\dfrac{V_{CH_4}}{90\%}=\dfrac{0,448}{90\%}\approx0,5l\)
a) Khí còn lại là CH4
\(n_{CH_4} = \dfrac{3,36}{22,4} = 0,15(mol)\\ n_{C_2H_4} = \dfrac{8-0,15.16}{28} = 0,2(mol)\)
Vậy :
\(\%m_{CH_4} = \dfrac{0,15.16}{8}.100\% = 30\%\\ \%m_{C_2H_4} = 100\% - 30\% = 70\%\)
b)
\(CH_4 + 2O_2 \xrightarrow{t^o} CO_2 + 2H_2O\\ C_2H_4 + 2O_2 \xrightarrow{t^o} 2CO_2 + 2H_2O\\ CO_2 + Ca(OH)_2 \to CaCO_3 + H_2O\\ n_{CaCO_3} = n_{CO_2} = n_{CH_4} + 2n_{C_2H_4} =0,55(mol)\\ m_{CaCO_3} =0,55.100 = 55(gam) \)
a)
$CH_4 + 2O_2 \xrightarrow{t^o} CO_2 + 2H_2O$
$C_2H_4 + 3O_2 \xrightarrow{t^o} 2CO_2 + 2H_2O$
$CO_2 + Ba(OH)_2 \to BaCO_3 + H_2O$
b)
Gọi $n_{CH_4} = a(mol) ; n_{C_2H_4} = b(mol)$
$\Rightarorw a + b = \dfrac{1,68}{22,4} = 0,075(1)$
Theo PTHH : $n_{BaCO_3} = n_{CO_2} = a + 2b = \dfrac{19,7}{197} = 0,1(2)$
Từ (1)(2) suy ra : a = 0,05 ; b = 0,025
$\%V_{CH_4} = \dfrac{0,05}{0,075}.100\% = 66,67\%$
$\%V_{C_2H_4} = 100\% - 66,67\% = 33,33\%$
c) $n_{O_2} = 2n_{CH_4} + 3n_{C_2H_4} = 0,175(mol)$
$\Rightarrow V_{O_2} = 0,175.22,4 = 3,92(lít)$
$\Rightarrow V_{kk} = 5V_{O_2} = 19,6(lít)$
ta có: nCO2 = nCaCO3 = 0,15 mol => nH2O = 0,4 molsau phản ứng với H2 thì Anken trở thành Ankan. Gọi CT chung của 2 Ankan là CaH(2a+2)CaH(2a+2) + (3a+1)/2 O2 ---> aCO2 + (a+1)H2O=> nCaH(2a+2) = nH2O - nCO2 = 0,4 - 0,15 = 0,25 mol (vô lí vì a >= 1 mà nCaH(2a+2) > nCO2)
Gọi \(\left\{{}\begin{matrix}n_{CO}=a\left(mol\right)\\n_{CH_4}=b\left(mol\right)\end{matrix}\right.\Rightarrow28a+16b=2,04\left(1\right)\)
\(n_{CaCO_3}=\dfrac{9,6}{100}=0,096\left(mol\right)\)
PTHH: \(2CO+O_2\xrightarrow[]{t^o}2CO_2\)
a------------>a
\(CH_4+2O_2\xrightarrow[]{t^o}CO_2+2H_2O\)
b---------------->b
\(Ca\left(OH\right)_2+CO_2\rightarrow CaCO_3\downarrow+H_2O\)
0,096<--0,096
`=> a + b = 0,096 (2)`
`(1), (2) => a = 0,042; b = 0,054`
\(\Rightarrow\left\{{}\begin{matrix}\%V_{CO}=\dfrac{0,042}{0,042+0,054}.100\%=43,75\%\\\%V_{CH_4}=100\%-43,75\%=56,25\%\end{matrix}\right.\)