Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>(x-7)(x+3)=0
hay \(x\in\left\{7;-3\right\}\)
b: =>2x+7=0
hay x=-7/2
c: \(\Delta=50-4\cdot6\cdot2=50-48=2\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{5\sqrt{2}-\sqrt{2}}{12}=\dfrac{\sqrt{2}}{3}\\x_2=\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)
a) 3x² - 4x + 1 = 0
a = 3; b = -4; c = 1
∆ = b² - 4ac = (-4)² - 4.3.1 = 4 > 0
Phương trình có hai nghiệm phân biệt:
x₁ = (-b + √∆)/2a = [-(-4) + 2]/(2.3) = 1
x₂ = (-b - √∆)/2a = [-(-4) - 2]/(2.3) = 1/3
Vậy S = {1/3; 1}
b) -4x² + 4x + 1 = 0
a = -4; b = 4; c = 1
∆ = b² - 4ac = 4² - 4.(-4).1 = 32 > 0
Phương trình có hai nghiệm phân biệt:
x₁ = (-b + √∆)/2a = (-4 + 4√2)/[2.(-4)] = (1 - √2)/2
x₂ = (-b - √∆)/2a = (-4 - 4√2)/[2.(-4)] = (1 + √2)/2
Vậy S = {(1 - √2)/2; (1 + √2)/2}
d) x² - 8x + 2 = 0
a = 1; b = -√8; c = 2
∆ = b² - 4ac = 8 - 8 = 0
Phương trình có nghiệm kép:
x₁ = x₂ = -b/2a = √8/2 = √2
Vậy S = {√2}
e) x² - 6x + 5 = 0
a = 1; b = -6; c = 5
∆ = b² - 4ac = 36 - 20 = 16 > 0
Phương trình có hai nghiệm phân biệt:
x₁ = (-b + √∆)/2a = (6 + 4)/2 = 5
x₂ = (-b - √∆)/2a = (6 - 4)/2 = 1
Vậy S = {1; 5}
Bạn nên viết đề bằng công thức toán để mọi người dễ đọc hơn nhé (nhấn vào biểu tượng $\sum$ góc trái khung soạn thảo)
a.
$x^2-11=0$
$\Leftrightarrow x^2=11$
$\Leftrightarrow x=\pm \sqrt{11}$
b. $x^2-12x+52=0$
$\Leftrightarrow (x^2-12x+36)+16=0$
$\Leftrightarrow (x-6)^2=-16< 0$ (vô lý)
Vậy pt vô nghiệm.
c.
$x^2-3x-28=0$
$\Leftrightarrow x^2+4x-7x-28=0$
$\Leftrightarrow x(x+4)-7(x+4)=0$
$\Leftrightarrow (x+4)(x-7)=0$
$\Leftrightarrow x+4=0$ hoặc $x-7=0$
$\Leftrightarrow x=-4$ hoặc $x=7$
d.
$x^2-11x+38=0$
$\Leftrightarrow (x^2-11x+5,5^2)+7,75=0$
$\Leftrightarrow (x-5,5)^2=-7,75< 0$ (vô lý)
Vậy pt vô nghiệm
e.
$6x^2+71x+175=0$
$\Leftrightarrow 6x^2+21x+50x+175=0$
$\Leftrightarrow 3x(2x+7)+25(2x+7)=0$
$\Leftrightarrow (3x+25)(2x+7)=0$
$\Leftrightarrow 3x+25=0$ hoặc $2x+7=0$
$\Leftrightarrow x=-\frac{25}{3}$ hoặc $x=-\frac{7}{2}$
a: Ta có: \(x^2+3x+4=0\)
\(\text{Δ}=3^2-4\cdot1\cdot4=9-16=-7< 0\)
Do đó: Phương trình vô nghiệm
a
a = 1, b = -3, c = 2
\(\Delta=b^2-4ac=\left(-3\right)^2-4.1.2=9-8=1\)
Nhẩm nghiệm:
a + b + c = 0 (1 - 3 + 2 = 0)
\(\Rightarrow x_1=1;x_2=\dfrac{c}{a}=\dfrac{2}{1}=2\)
b
a = -2, b = 1, c = 1
\(\Delta=1^2-4.\left(-2\right).1=1+8=9\)
Nhẩm nghiệm:
a + b + c = 0 (-2 + 1 + 1 = 0)
\(\Rightarrow x_1=1;x_2=\dfrac{c}{a}=\dfrac{1}{-2}=-\dfrac{1}{2}\)
c
a = 1, b = -4, c = 4
\(\Delta=\left(-4\right)^2-4.4=16-16=0\)
=> Phương trình có nghiệm kép.
\(x_1=x_2=-\dfrac{b}{2a}=\dfrac{-4}{2.1}=-2\)
d
a = 1, b = -1, c = 4
\(\Delta=\left(-1\right)^2-4.4=1-16=-15< 0\)
=> Phương trình vô nghiệm.
a) x² - 3x + 2 = 0
a = 1; b = -3; c = 2
∆ = b² - 4ac = (-3)² - 4.1.2 = 9 - 8 = 1 > 0
Phương trình có hai nghiệm phân biệt:
x₁ = (-b + √∆)/2a = [-(-3) + 1]/2 = 2
x₂ = (-b - √∆)/2a = [-(-3) - 1]/2 = 1
Vậy S = {1; 2}
b) -2x² + x + 1 = 0
a = -2; b = 1; c = 1
∆ = b² - 4ac = 1² - 4.(-2).1 = 9 > 0
Phương trình có hai nghiệm phân biệt
x₁ = (-b + √∆)/2a = (-1 + 3)/[2.(-2)] = -1/2
x₂ = (-b - √∆)/2a = (-1 - 3)/[2.(-2)] = 1
Vậy S = {-1/2; 1}
c) x² - 4x + 4 = 0
a = 1; b = -4; c = 4
∆ = b² - 4ac = (-4)² - 4.1.4 = 0
Phương trình có nghiệm kép:
x₁ = x₂ = -b/2a = -(-4)/(2.1) = 2
Vậy S = {2}
d) x² - x + 4 = 0
a = 1; b = -1; c = 4
∆ = b² - 4ac = (-1)² - 4.1.4 = -15 < 0
Phương trình vô nghiệm
a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow x+5=4\)
hay x=-1
b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow\sqrt{x-1}=17\)
\(\Leftrightarrow x-1=289\)
hay x=290
c: Ta có: \(\sqrt{x-1}+\sqrt{9x-9}-\sqrt{4x-4}=4\)
\(\Leftrightarrow2\sqrt{x-1}=4\)
\(\Leftrightarrow x-1=4\)
hay x=5
e: Ta có: \(\sqrt{4x^2-28x+49}-5=0\)
\(\Leftrightarrow\left|2x-7\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-7=5\\2x-7=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=1\end{matrix}\right.\)
a. ĐKXĐ: $x\in\mathbb{R}$
PT $\Leftrightarrow \sqrt{(x-2)^2}=2-x$
$\Leftrightarrow |x-2|=2-x$
$\Leftrightarrow 2-x\geq 0$
$\Leftrightarrow x\leq 2$
b. ĐKXĐ: $x\geq 2$
PT $\Leftrightarrow \sqrt{4}.\sqrt{x-2}-\frac{1}{5}\sqrt{25}.\sqrt{x-2}=3\sqrt{x-2}-1$
$\Leftrightarrow 2\sqrt{x-2}-\sqrt{x-2}=3\sqrt{x-2}-1$
$\Leftrightarrow 1=2\sqrt{x-2}$
$\Leftrightarrow \frac{1}{2}=\sqrt{x-2}$
$\Leftrightarrow \frac{1}{4}=x-2$
$\Leftrightarrow x=\frac{9}{4}$ (tm)
a: =>3x^2-3x-2x+2=0
=>(x-1)(3x-2)=0
=>x=2/3 hoặc x=1
b: =>2x^2=11
=>x^2=11/2
=>\(x=\pm\dfrac{\sqrt{22}}{2}\)
c: Δ=5^2-4*1*7=25-28=-3<0
=>PTVN
f: =>6x^4-6x^2-x^2+1=0
=>(x^2-1)(6x^2-1)=0
=>x^2=1 hoặc x^2=1/6
=>\(\left[{}\begin{matrix}x=\pm1\\x=\pm\dfrac{\sqrt{6}}{6}\end{matrix}\right.\)
d: =>(5-2x)(5+2x)=0
=>x=5/2 hoặc x=-5/2
e: =>4x^2+4x+1=x^2-x+9 và x>=-1/2
=>3x^2+5x-8=0 và x>=-1/2
=>3x^2+8x-3x-8=0 và x>=-1/2
=>(3x+8)(x-1)=0 và x>=-1/2
=>x=1
giải pt
ảo ma