K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2017

Bài 1: (Sgk/36):

a. \(\dfrac{5y}{7}\)=\(\dfrac{20xy}{28x}\)

5y . 28x = 140xy

7 . 20xy = 140xy

=> 5y . 28x = 7 . 20xy

Vậy \(\dfrac{5y}{7}\)=\(\dfrac{20xy}{28x}\)

b. \(\dfrac{3x\left(x+5\right)}{2\left(x+5\right)}\)=\(\dfrac{3x}{2}\)

3x . 2(x+5) = 6x2+30x

2 . 3x(x+5) = 6x2+30x

=> 3x . 2(x+5) = 2 . 3x(x+5)

Vậy \(\dfrac{3x\left(x+5\right)}{2\left(x+5\right)}\)=\(\dfrac{3x}{2}\)

c. \(\dfrac{x+2}{x-1}\)=\(\dfrac{\left(x+2\right)\left(x+1\right)}{x^2-1}\)

(x+2) (x2-1) = (x+2) (x-1) (x-1)

=> (x+2) (x2-1) = (x-1) (x+2) (x+1)

Vậy \(\dfrac{x+2}{x-1}\)=\(\dfrac{\left(x+2\right)\left(x+1\right)}{x^2-1}\)

d. \(\dfrac{x^2-x-2}{x+1}\)=\(\dfrac{x^2-3x+2}{x-1}\)

(x-1) (x2-x-2) = x3-2x2-x+2

(x+1) (x2-3x+2) = x3-2x2-x+2

=> (x-1) (x2-x-2) = (x2-3x+2) (x+1)

Vậy \(\dfrac{x^2-x-2}{x+1}\)=\(\dfrac{x^2-3x+2}{x-1}\)

29 tháng 11 2021

1A,B,D

2 M=2

\(=\dfrac{3}{4x}\)

\(=\dfrac{4\left(x+y\right)}{x-y}=\dfrac{4x+4y}{x-y}\)

5 K rút gọn đc

\(=\dfrac{4\left(x-1\right)+2\left(x-1\right)}{6\left(x-1\right)}=\dfrac{6\left(x-1\right)}{6\left(x-1\right)}=1\)

29 tháng 11 2021

cảm ơn nhé

NV
18 tháng 3 2021

1a.

ĐKXĐ: \(x\ne\left\{1;3\right\}\)

\(\Leftrightarrow\dfrac{6}{x-1}=\dfrac{4}{x-3}+\dfrac{4}{x-3}\)

\(\Leftrightarrow\dfrac{3}{x-1}=\dfrac{4}{x-3}\Leftrightarrow3\left(x-3\right)=4\left(x-1\right)\)

\(\Leftrightarrow3x-9=4x-4\Rightarrow x=-5\)

b.

ĐKXĐ: \(x\ne\left\{-1;2\right\}\)

\(\Leftrightarrow\dfrac{5}{x+1}=\dfrac{3}{2-x}+\dfrac{1}{2-x}\)

\(\Leftrightarrow\dfrac{5}{x+1}=\dfrac{4}{2-x}\Leftrightarrow5\left(2-x\right)=4\left(x+1\right)\)

\(\Leftrightarrow10-2x=4x+4\Leftrightarrow6x=6\Rightarrow x=1\)

NV
18 tháng 3 2021

1c.

ĐKXĐ: \(x\ne\left\{2;5\right\}\)

\(\Leftrightarrow\dfrac{3x\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}-\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x-5\right)}=\dfrac{-3x}{\left(x-2\right)\left(x-5\right)}\)

\(\Leftrightarrow3x\left(x-5\right)-x\left(x-2\right)=-3x\)

\(\Leftrightarrow2x^2-10x=0\Leftrightarrow2x\left(x-5\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=5\left(loại\right)\end{matrix}\right.\)

2a.

\(\Leftrightarrow-4x^2-5x+6=x^2+4x+4\)

\(\Leftrightarrow5x^2+9x-2=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{5}\end{matrix}\right.\)

2b.

\(2x^2-6x+1=0\Rightarrow x=\dfrac{3\pm\sqrt{7}}{2}\)

7 tháng 8 2021

a/ ĐK: $x\ne -5$

$\dfrac{6x^2+30x}{4}=\dfrac{6x(x+5)}{4}=\dfrac{3x(x+5)}{2}$ 

Đề này sai

b/ ĐK: $x\ne \pm 1$

$\dfrac{(x+2)(x+1)}{x^2-1}\\=\dfrac{(x+2)(x+1)}{(x-1)(x+1)}\\=\dfrac{x+2}{x-1}$

$\to$ ĐPCM

Câu a sai đề nhé.

8 tháng 2 2022

a, \(\Rightarrow10x-4+6x=6+15-9x\Leftrightarrow7x=25\Leftrightarrow x=\dfrac{25}{7}\)

b, \(\Rightarrow2\left(3x^2+5x-2\right)-6x^2-3=33\Leftrightarrow10x-7=33\Leftrightarrow x=4\)

c, \(\Rightarrow12x-10x-4=21-9x\Leftrightarrow11x=25\Leftrightarrow x=\dfrac{25}{11}\)

d, \(\Rightarrow3x-3+2x-2-x+1=12\Leftrightarrow4x=16\Leftrightarrow x=4\)

8 tháng 2 2022

\(\dfrac{5x-2}{3}+x=1+\dfrac{5-3x}{2}\)

\(\Leftrightarrow\dfrac{5x-2+3x}{3}=\dfrac{2+5-3x}{2}\)

\(\Leftrightarrow\dfrac{8x-2}{3}=\dfrac{7-3x}{2}\)

\(\Leftrightarrow16x-4=21-9x\)

\(\Leftrightarrow16x+9x=21+4\)

\(\Leftrightarrow25x=25\)

\(\Leftrightarrow x=1\)

24 tháng 7 2017

câu d

\(D=\dfrac{\left(1-x^2\right)}{x}\left(\dfrac{x^2}{x+3}-1\right)+\dfrac{3x^2-14x+3}{x^2+3x}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{-3;0\right\}\\D=\dfrac{\left(1-x^2\right)\left(x^2-x-3\right)+3x^2-14x+3}{x\left(x+3\right)}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{-3;0\right\}\\D=\dfrac{x^2-x-3-x^4+x^3-3x^2+3x^2-14x+3}{x\left(x+3\right)}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{-3;0\right\}\\D=\dfrac{-x^4+x^3+x^2-15x}{x\left(x+3\right)}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{-3;0\right\}\\D=\dfrac{-x\left(x^3-x^2-x+15\right)}{x\left(x+3\right)}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{-3;0\right\}\\D=\dfrac{-\left(x^3-x^2-x+15\right)}{\left(x+3\right)}\end{matrix}\right.\)

a) Ta có: \(\left(2x-3\right)^2=\left(2x-3\right)\left(x+1\right)\)

\(\Leftrightarrow\left(2x-3\right)^2-\left(2x-3\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(2x-3-x-1\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=4\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{3}{2};4\right\}\)

b) Ta có: \(x\left(2x-9\right)=3x\left(x-5\right)\)

\(\Leftrightarrow x\left(2x-9\right)-3x\left(x-5\right)=0\)

\(\Leftrightarrow x\left(2x-9\right)-x\left(3x-15\right)=0\)

\(\Leftrightarrow x\left(2x-9-3x+15\right)=0\)

\(\Leftrightarrow x\left(6-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\6-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

Vậy: S={0;6}

c) Ta có: \(3x-15=2x\left(x-5\right)\)

\(\Leftrightarrow3\left(x-5\right)-2x\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(3-2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\3-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\2x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{5;\dfrac{3}{2}\right\}\)

d) Ta có: \(\dfrac{5-x}{2}=\dfrac{3x-4}{6}\)

\(\Leftrightarrow6\left(5-x\right)=2\left(3x-4\right)\)

\(\Leftrightarrow30-6x=6x-8\)

\(\Leftrightarrow30-6x-6x+8=0\)

\(\Leftrightarrow-12x+38=0\)

\(\Leftrightarrow-12x=-38\)

\(\Leftrightarrow x=\dfrac{19}{6}\)

Vậy: \(S=\left\{\dfrac{19}{6}\right\}\)

e) Ta có: \(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)

\(\Leftrightarrow\dfrac{3\left(3x+2\right)}{6}-\dfrac{3x+1}{6}=\dfrac{12x}{6}+\dfrac{10}{6}\)

\(\Leftrightarrow6x+4-3x-1=12x+10\)

\(\Leftrightarrow3x+3-12x-10=0\)

\(\Leftrightarrow-9x-7=0\)

\(\Leftrightarrow-9x=7\)

\(\Leftrightarrow x=-\dfrac{7}{9}\)

Vậy: \(S=\left\{-\dfrac{7}{9}\right\}\)

a) Ta có: \(\dfrac{x+4}{5}-x+4=\dfrac{x}{3}-\dfrac{x-2}{2}\)

\(\Leftrightarrow\dfrac{6\left(x+4\right)}{30}-\dfrac{30x}{30}+\dfrac{120}{30}=\dfrac{10x}{30}-\dfrac{15\left(x-2\right)}{30}\)

\(\Leftrightarrow6x+24-30x+120=10x-15x+30\)

\(\Leftrightarrow-24x+144=-5x+30\)

\(\Leftrightarrow-24x+5x=30-144\)

\(\Leftrightarrow-19x=-114\)

hay x=6

Vậy: S={6}

b) Ta có: \(\dfrac{4-5x}{6}=\dfrac{2\left(-x+1\right)}{2}\)

\(\Leftrightarrow2\cdot\left(4-5x\right)=12\left(-x+1\right)\)

\(\Leftrightarrow2-10x=-12x+12\)

\(\Leftrightarrow2-10x+12x-12=0\)

\(\Leftrightarrow2x-10=0\)

\(\Leftrightarrow2x=10\)

hay x=5

Vậy: S={5}

c) Ta có: \(\dfrac{-\left(x-3\right)}{2}-2=\dfrac{5\left(x+2\right)}{4}\)

\(\Leftrightarrow\dfrac{2\left(3-x\right)}{4}-\dfrac{8}{4}=\dfrac{5\left(x+2\right)}{4}\)

\(\Leftrightarrow6-2x-8=5x+10\)

\(\Leftrightarrow-2x+2-5x-10=0\)

\(\Leftrightarrow-7x-8=0\)

\(\Leftrightarrow-7x=8\)

hay \(x=-\dfrac{8}{7}\)

Vậy: \(S=\left\{-\dfrac{8}{7}\right\}\)

d) Ta có: \(\dfrac{7-3x}{2}-\dfrac{5+x}{5}=1\)

\(\Leftrightarrow\dfrac{5\left(7-3x\right)}{10}-\dfrac{2\left(x+5\right)}{10}=\dfrac{10}{10}\)

\(\Leftrightarrow35-15x-2x-10-10=0\)

\(\Leftrightarrow-17x+15=0\)

\(\Leftrightarrow-17x=-15\)

hay \(x=\dfrac{15}{17}\)

Vậy: \(S=\left\{\dfrac{15}{17}\right\}\)

1 tháng 2 2021

a) Ta có: x+45−x+4=x3−x−22x+45−x+4=x3−x−22

⇔6(x+4)30−30x30+12030=10x30−15(x−2)30⇔6(x+4)30−30x30+12030=10x30−15(x−2)30

⇔6x+24−30x+120=10x−15x+30⇔6x+24−30x+120=10x−15x+30

⇔−24x+144=−5x+30⇔−24x+144=−5x+30

⇔−24x+5x=30−144⇔−24x+5x=30−144

⇔−19x=−114⇔−19x=−114

hay x=6

Vậy: S={6}

b) Ta có: 4−5x6=2(−x+1)24−5x6=2(−x+1)2

⇔2⋅(4−5x)=12(−x+1)⇔2⋅(4−5x)=12(−x+1)

⇔2−10x=−12x+12⇔2−10x=−12x+12

⇔2−10x+12x−12=0⇔2−10x+12x−12=0

⇔2x−10=0⇔2x−10=0

⇔2x=10⇔2x=10

hay x=5

Vậy: S={5}

c) Ta có: −(x−3)2−2=5(x+2)4−(x−3)2−2=5(x+2)4

⇔2(3−x)4−84=5(x+2)4⇔2(3−x)4−84=5(x+2)4

⇔6−2x−8=5x+10⇔6−2x−8=5x+10

⇔−2x+2−5x−10=0⇔−2x+2−5x−10=0

⇔−7x−8=0⇔−7x−8=0

⇔−7x=8⇔−7x=8

hay x=−87x=−87

Vậy: S={−87}S={−87}

d) Ta có: 7−3x2−5+x5=17−3x2−5+x5=1

⇔5(7−3x)10−2(x+5)10=1010⇔5(7−3x)10−2(x+5)10=1010

⇔35−15x−2x−10−10=0⇔35−15x−2x−10−10=0

⇔−17x+15=0⇔−17x+15=0

⇔−17x=−15⇔−17x=−15

hay x=1517x=1517

Vậy: S={1517}

a) Ta có: x+45−x+4=x3−x−22x+45−x+4=x3−x−22

⇔6(x+4)30−30x30+12030=10x30−15(x−2)30⇔6(x+4)30−30x30+12030=10x30−15(x−2)30

⇔6x+24−30x+120=10x−15x+30⇔6x+24−30x+120=10x−15x+30

⇔−24x+144=−5x+30⇔−24x+144=−5x+30

⇔−24x+5x=30−144⇔−24x+5x=30−144

⇔−19x=−114⇔−19x=−114

hay x=6

Vậy: S={6}

b) Ta có: 4−5x6=2(−x+1)24−5x6=2(−x+1)2

⇔2⋅(4−5x)=12(−x+1)⇔2⋅(4−5x)=12(−x+1)

⇔2−10x=−12x+12⇔2−10x=−12x+12

⇔2−10x+12x−12=0⇔2−10x+12x−12=0

⇔2x−10=0⇔2x−10=0

⇔2x=10⇔2x=10

hay x=5

Vậy: S={5}

c) Ta có: −(x−3)2−2=5(x+2)4−(x−3)2−2=5(x+2)4

⇔2(3−x)4−84=5(x+2)4⇔2(3−x)4−84=5(x+2)4

⇔6−2x−8=5x+10⇔6−2x−8=5x+10

⇔−2x+2−5x−10=0⇔−2x+2−5x−10=0

⇔−7x−8=0⇔−7x−8=0

⇔−7x=8⇔−7x=8

hay x=−87x=−87

Vậy: S={−87}S={−87}

d) Ta có: 7−3x2−5+x5=17−3x2−5+x5=1

⇔5(7−3x)10−2(x+5)10=1010⇔5(7−3x)10−2(x+5)10=1010

⇔35−15x−2x−10−10=0⇔35−15x−2x−10−10=0

⇔−17x+15=0⇔−17x+15=0

⇔−17x=−15⇔−17x=−15

hay x=1517x=1517

Vậy: S={1517}