Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(TXD:ℝ\)
Ta xét: \(lim_{x\rightarrow3}\left(x^3+2x-1\right)=3^3+2.3-1=32\)
mà \(f\left(3\right)=32\)
=> \(lim_{x\rightarrow3}\left(x^3+2x-1\right)=f\left(3\right)\)
=> hàm số liên tục tại x=3
Hàm số \(f\left( x \right) = 2{x^3} + x + 1\) xác định trên \(\mathbb{R}\).
Ta có: \(\begin{array}{l}\mathop {\lim }\limits_{x \to 2} f\left( x \right) = \mathop {\lim }\limits_{x \to 2} \left( {2{x^3} + x + 1} \right) = {2.2^3} + 2 + 1 = 17\\f\left( 2 \right) = {2.2^3} + 2 + 1 = 17\\ \Rightarrow \mathop {\lim }\limits_{x \to 2} f\left( x \right) = f\left( 2 \right)\end{array}\)
Do đó hàm số liên tục tại x = 2.
Hàm số f(x) = x3 + 2x - 1 xác định trên R và x0 = 3 ∈ R.
f(x) = (x3 + 2x - 1) = 33 + 2.3 - 1 = f(3)
nên hàm số đã cho liên tục tại điểm x0 = 3.
Hàm số f(x) = x3 + 2x – 1 xác định trên R và x0 = 3 ∈ R.
= 33 + 2.3 – 1 = f(3)
nên hàm số đã cho liên tục tại điểm x0 = 3.
I. Hàm số xác định trên D = R.
+) \(\lim\limits f\left(x\right)_{x\rightarrow1}=\lim\limits_{x\rightarrow1}\dfrac{x^2-3x+2}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-2\right)\left(x-1\right)}{\left(x-1\right)}\)
\(=\lim\limits_{x\rightarrow1}\left(x-2\right)\)
\(=-1\)
+) \(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\left(1-2x\right)=-1\)
=> Hàm số liên tục tại x0 = 1
II. Gọi phương trình tiếp tuyến tại N(x0; y0) là:
y = y'(x0)(x - x0) + y0
y = -x3 - x2 - 6x + 1
=> y' = -3x2 - 2x + 6
Vì tiếp tuyến song song với đường thẳng y = -6x + 17 => y'(x0) = 6
<=> -3x2 - 2x + 6 = 6
<=> -3x2 - 2x = 0
<=> -x(3x + 2) = 0
<=> x = 0 hoặc x = -2/3
Trường hợp 1: x0 = 0 => y0 = 0
=> y'(x0) = 6
=> Phương trình tiếp tuyến: y = 6(x - 0) + 1
<=> y = 6x + 1
Trường hợp 2: x0 = -2/3 => y0 = 37/9
=> y'(x0) = 9
=> Phương trình tiếp tuyến: y = 9(x + 2/3) + 37/9
<=> y = 9x + 91/9
a) Ta có: g(2) = 5.
⇒ g(x) không liên tục tại x = 2.
b) Để g(x) liên tục tại x = 2
Vậy để hàm số liên tục tại x = 2 thì cần thay 5 bằng 12.
Đáp án A
(1) Nếu hàm số f(x) có đạo hàm tại điểm x = x 0 thì f(x) liên tục tại điểm đó. Đây là mệnh đề đúng.
(2) Nếu hàm số f (x) liên tục tại điểm x = x 0 thì f(x) có đạo hàm tại điểm đó.
Phản ví dụ
Lấy hàm f ( x ) = x ta có D= R nên hàm số f(x) liên tục trên R.
Nhưng ta có l i m x → 0 + f ( x ) - f ( 0 ) x - 0 = l i m x → 0 + x - 0 x - 0 = l i m x → 0 + x - 0 x - 0 = 1 l i m x → 0 - f ( x ) - f ( 0 ) x - 0 = l i m x → 0 - x - 0 x - 0 = l i m x → 0 - - x - 0 x - 0 = - 1
Nên hàm số không có đạo hàm tại x = 0.
Vậy mệnh đề (2) là mệnh đề sai.
(3) Nếu f(x) gián đoạn tại x = x 0 thì chắc chắn f(x) không có đạo hàm tại điểm đó.
Vì (1) là mệnh đề đúng nên ta có f(x) không liên tục tại x = x 0 thì f(x) không có đạo hàm tại điểm đó.
Vậy (3) là mệnh đề đúng.
+) (1) Nếu hàm số f(x) có đạo hàm tại điểm Xét ba mệnh đề sau:
(1) Nếu hàm số f(x) có đạo hàm tại điểm x = x 0 thì f(x) liên tục tại điểm đó.
(2) Nếu hàm số f(x) liên tục tại điểm x = x 0 thì f(x) có đạo hàm tại điểm đó.
(3) Nếu f(x) gián đoạn tại x = x 0 thì chắc chắn f(x) không có đạo hàm tại điểm đó.- Trong ba câu trên: thì f(x) liên tục tại điểm đó. Đây là mệnh đề đúng.
+) (2) Nếu hàm số f(x) liên tục tại điểm x = x 0 thì f(x) có đạo hàm tại điểm đó.Đây là mệnh đề sai.
Phản ví dụ:
- Lấy hàm f(x) = |x| ta có D = R nên hàm số f(x) liên tục trên R
- Nhưng ta có
- Nên hàm số không có đạo hàm tại x = 0.
- Vậy mệnh đề (2) là mệnh đề sai.
+) (3) Nếu f(x) gián đoạn tại x = x 0 thì chắc chắn f(x) không có đạo hàm tại điểm đó.
- Vậy (3) là mệnh đề đúng.Vì (1) là mệnh đề đúng nên ta có f(x) không liên tục tại x = x 0 thì f(x) không có đạo hàm tại điểm đó.
- Vậy (3) là mệnh đề đúng.
Chọn A.
+) (1) Nếu hàm số f(x) có đạo hàm tại điểm Xét ba mệnh đề sau:
(1) Nếu hàm số f(x) có đạo hàm tại điểm x = x 0 thì f(x) liên tục tại điểm đó.
(2) Nếu hàm số f(x) liên tục tại điểm x = x 0 thì f(x) có đạo hàm tại điểm đó.
(3) Nếu f(x) gián đoạn tại x = x 0 thì chắc chắn f(x) không có đạo hàm tại điểm đó.- Trong ba câu trên: thì f(x) liên tục tại điểm đó. Đây là mệnh đề đúng.
+) (2) Nếu hàm số f(x) liên tục tại điểm x = x 0 thì f(x) có đạo hàm tại điểm đó.Đây là mệnh đề sai.
Phản ví dụ:
- Lấy hàm f(x) = |x| ta có D = R nên hàm số f(x) liên tục trên R
- Nhưng ta có
- Nên hàm số không có đạo hàm tại x = 0.
- Vậy mệnh đề (2) là mệnh đề sai.
+) (3) Nếu f(x) gián đoạn tại x = x 0 thì chắc chắn f(x) không có đạo hàm tại điểm đó.
- Vậy (3) là mệnh đề đúng.Vì (1) là mệnh đề đúng nên ta có f(x) không liên tục tại x = x 0 thì f(x) không có đạo hàm tại điểm đó.
- Vậy (3) là mệnh đề đúng.
Chọn A.
Hàm số f(x) = x3 + 2x - 1 xác định trên R và x0 = 3 ∈ R.
f(x) = (x3 + 2x - 1) = 33 + 2.3 - 1 = f(3)
nên hàm số đã cho liên tục tại điểm x0 = 3.