K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2017

Có 1 nhận xét nho nhỏ: tổng của tất cả các hệ số sau khi khai triển 1 đa thức chứa biến chính bằng giá trị của đa thức đó khi giá trị của biến bằng 1.

Do đó tổng các hệ số của biểu thức trên là: \(\left(3-4.1+1^2\right)^{2016}.\left(3+4.1+1^2\right)^{2017}=0\)

24 tháng 5 2018

a) \(\left|x+2\right|+\left|x-3\right|=7\)

Lập bảng xét dấu:

x -2 3
x + 2 - 0 + \(|\) +
x - 3 - \(|\) - 0 +

* Nếu \(x< -2\) thì pttt:

\(-x-2-x+3=7\)

\(\Leftrightarrow-2x+1=7\)

\(\Leftrightarrow-2x=6\)

\(\Leftrightarrow x=-3\left(tm\right)\)

* Nếu \(-2\le x\le3\) thì pttt:

\(x+2-x+3=7\)

\(\Leftrightarrow5=7\) ( vô lí )

* Nếu \(x>3\) thì pttt:

\(x+2+x-3=7\)

\(\Leftrightarrow2x-1=7\)

\(\Leftrightarrow2x=8\)

\(\Leftrightarrow x=4\left(tm\right)\)

Vậy phương trình có tập nghiệm \(S=\left\{-3;4\right\}\)

24 tháng 5 2018

b) \(\left|x+2\right|-6x=1\)

* Nếu \(x+2>0\Leftrightarrow x>2\) thì pttt:

\(x+2-6x=1\)

\(\Leftrightarrow-6x=-1\)

\(\Leftrightarrow x=1\left(ktm\right)\)

* Nếu \(x+2< 0\Leftrightarrow x< 2\) thì pttt:

\(-x-2-6x=1\)

\(\Leftrightarrow-7x=3\)

\(\Leftrightarrow x=-\dfrac{3}{7}\left(tm\right)\)

Vậy pt có tập nghiệm \(S=\left\{\dfrac{-3}{7}\right\}\)

16 tháng 4 2023

\(A\left(x\right)+B\left(x\right)=2x^3+4x^2-x-1+2x^3-2x^2-x-3\\ =\left(2x^3+2x^3\right)+\left(4x^2-2x^2\right)+\left(-x-x\right)+\left(-1-3\right)\\ =4x^3+2x^2-2x-4\ne P\left(x\right)\)

=> Chọn B. Sai

24 tháng 7 2018

a. \(\dfrac{1}{3}.\left(x-1\right)+\dfrac{2}{5}.\left(x+1\right)=0\)

=> \(\dfrac{1}{3}x-\dfrac{1}{3}+\dfrac{2}{5}x+\dfrac{2}{5}=0\)

=> \(\dfrac{1}{3}x+\dfrac{2}{5}x=0+\dfrac{1}{3}-\dfrac{2}{5}\)

=> \(\dfrac{11}{15}x=\dfrac{-1}{15}\)

=> \(x=\dfrac{-1}{11}\)

24 tháng 7 2018

Đây toán 8 mà? :v

a,\(\dfrac{1}{5}x\left(x-1\right)+\dfrac{2}{5}x\left(x+1\right)=0\)

\(\Leftrightarrow5x\left(x-1\right)+6x\left(x+1\right)=0\)

\(\Leftrightarrow\left[5\left(x-1\right)+6x\left(x+1\right)\right]x=0\)

\(\Leftrightarrow\left(5x-5+6x+6\right)x=0\)

\(\Leftrightarrow\left(11+1\right)x=0\)

\(\Leftrightarrow11x+1=0;x=0\)

\(\Leftrightarrow x=-\dfrac{1}{11};x=0\)

Vậy....

1: =>3x+2=x+1 hoặc 3x+2=-x-1

=>2x=-1 hoặc 4x=-3

=>x=-1/2 hoặc x=-3/4

2: =>|x+2|(|x|-1|)=0

=>x=-2; x=1; x=-1

3: \(\Leftrightarrow\left\{{}\begin{matrix}x>=-1\\\left(2x+3+x+1\right)\left(2x+3-x-1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=-1\\\left(3x+4\right)\left(x+2\right)=0\end{matrix}\right.\Leftrightarrow x\in\varnothing\)

a: \(=-2x^2\cdot3x+2x^2\cdot4X^3-2x^2\cdot7+2x^2\cdot x^2\)

\(=8x^5+2x^4-6x^3-14x^2\)

b: \(=2x^3-3x^2-5x+6x^2-9x-15\)

\(=2x^3+3x^2-14x-15\)

c: \(=\dfrac{-6x^5}{3x^3}+\dfrac{7x^4}{3x^3}-\dfrac{6x^3}{3x^3}=-2x^2+\dfrac{7}{3}x-2\)

d: \(=\dfrac{\left(3x-2\right)\left(3x+2\right)}{3x+2}=3x-2\)

e: \(=\dfrac{2x^4-8x^3-6x^2-5x^3+20x^2+15x+x^2-4x-3}{x^2-4x-3}\)

=2x^2-5x+1

21 tháng 3 2018

a,\(A=x^{2005}-2006x^{2004}+............+2006x-1\\ A=x^{2005}-\left(x+1\right)x^{2004}+..............+\left(x+1\right)x-1\\ A=x^{2005}-x^{2005}+x^{2004}-x^{2004}+.............+x^2+x-1\\ A=x-1\\ \Leftrightarrow A=2004\)vậy

12 tháng 4 2020

a,A=x2005−2006x2004+............+2006x−1A=x2005−(x+1)x2004+..............+(x+1)x−1A=x2005−x2005+x2004−x2004+.............+x2+x−1A=x−1⇔A=2004