Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{-9}{10}.\frac{5}{14}+\frac{1}{10}.\left(\frac{-9}{2}\right)+\frac{1}{7}.\frac{-9}{10}\)
\(=\frac{-9}{10}.\frac{5}{14}+\frac{1}{7}.\frac{-9}{10}+\frac{1}{10}.\left(\frac{-9}{2}\right)\)
\(=\frac{-9}{10}.\left(\frac{5}{14}+\frac{1}{7}\right)+\frac{1}{10}.\left(\frac{-9}{2}\right)\)
\(=\frac{-9}{10}.\frac{1}{2}+\frac{1}{10}.\left(\frac{-9}{2}\right)\)
\(=\left(\frac{-9}{10}+\frac{1}{2}\right)^2\)
\(=\left(\frac{-9}{10}+\frac{5}{10}\right)^2\)
\(=\left(\frac{-2}{5}\right)^2\)
\(=\frac{4}{25}\)
Tính nhanh
\(\frac{-9}{10}\).\(\frac{5}{14}+\frac{1}{10}.\frac{-9}{2}\)+ \(\frac{1}{7}.\frac{-9}{2}\)
\(=\frac{-9}{2}.\frac{5}{70}+\frac{1}{10}.\frac{-9}{2}+\frac{1}{7}.\frac{-9}{2}\Rightarrow\)\(\frac{-9}{2}.\left(\frac{5}{70}+\frac{1}{10}+\frac{1}{7}\right)\Rightarrow\frac{-9}{2}.\frac{11}{35}=\frac{-99}{70}\)
a) Đặt \(A=\frac{7^{15}}{1+7+7^2+...+7^{14}}\)
Đặt \(B=1+7+7^2+...+7^{14}\)
\(\Rightarrow7B=7+7^2+...+7^{15}\)
\(\Rightarrow7B-B=6B=7^{15}-1\)
\(\Rightarrow B=\frac{7^{15}-1}{6}\)
\(\Rightarrow A=\frac{7^{15}-1+1}{\frac{7^{15}-1}{6}}=\left(7^{15}-1\right).\frac{6}{7^{15}-1}+\frac{6}{7^{15}-1}=6+\frac{6}{7^{15}-1}\)
Tự làm tiếp nha
b, Ta có:\(\dfrac{1+3+3^2+.....+3^{10}}{1+3+3^2+.....+3^9}\) \(=\dfrac{1}{1+3+3^2+...+3^9}+\dfrac{3+3^2+...+3^{10}}{1+3+3^2+...+3^9}\)\(=\dfrac{1}{1+3+3^2+...+3^9}+\dfrac{3.\left(1+3+3^2+...+3^9\right)}{1+3+3^2+...+3^9}\)
\(=\dfrac{1}{1+3+3^2+...+3^9}+3< 4\)
\(\Rightarrow\) \(\dfrac{1+3+3^2+...+3^{10}}{1+3+3^2+...+3^9}< 4\) \(\left(1\right)\)
Ta có :\(\dfrac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}\)
\(=\dfrac{1}{1+5+5^2+...+5^9}+\dfrac{5+5^2+...+5^{10}}{1+5+5^2+....+5^9}\)
\(=\dfrac{1}{1+5+5^2+...+5^9}+\dfrac{5.\left(1+5+5^2+...+5^9\right)}{1+5+5^2+...+5^9}\)
\(=\dfrac{1}{1+5+5^2+...+5^9}+5>5\)
\(\Rightarrow\) \(\dfrac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}>5\) \(\left(2\right)\)
Từ \(\left(1\right)và\left(2\right)\)
\(\Rightarrow\dfrac{1+3+3^2+...+3^{10}}{1+3+3^2+...+3^9}< \dfrac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}\)
Vậy \(\dfrac{1+3+3^2+...+3^{10}}{1+3+3^2+...+3^9}< \dfrac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}\)
a, Đặt \(A\)\(=\dfrac{7^{15}}{1+7+7^2+...+7^{14}}\)
\(\Rightarrow\) \(\dfrac{1}{A}\) \(=\dfrac{1+7+7^2+...+7^{14}}{7^{15}}=\dfrac{1}{7^{15}}+\dfrac{7}{7^{15}}+\dfrac{7^2}{7^{15}}+...+\dfrac{7^{14}}{7^{15}}\)
\(=\dfrac{1}{7^{15}}+\dfrac{1}{7^{14}}+\dfrac{1}{7^{13}}+....+\dfrac{1}{7}\)
Đặt \(B=\dfrac{9^{15}}{1+9+9^2+...+9^{14}}\)
\(\Rightarrow\dfrac{1}{B}=\dfrac{1+9+9^2+...+9^{14}}{9^{15}}=\dfrac{1}{9^{15}}+\dfrac{9}{9^{15}}+\dfrac{9^2}{9^{15}}+...+\dfrac{9^{14}}{9^{15}}\)
\(=\dfrac{1}{9^{15}}+\dfrac{1}{9^{14}}+\dfrac{1}{9^{13}}+...+\dfrac{1}{9}\)
Mà \(\dfrac{1}{7^{15}}>\dfrac{1}{9^{15}};\dfrac{1}{7^{14}}>\dfrac{1}{9^{14}};\dfrac{1}{7^{13}}>\dfrac{1}{9^{13}};....;\dfrac{1}{7}>\dfrac{1}{9}\)
\(\Rightarrow\dfrac{1}{A}>\dfrac{1}{B}\) \(\Rightarrow A< B\)
Vậy\(\dfrac{7^{15}}{1+7+7^2+...+7^{14}}>\dfrac{9^{15}}{1+9+9^2+....+9^{14}}\)
\(M=\frac{\left(-7\right).15.9.15.14}{9.49.7.15}=\frac{-15.2}{7}=\frac{-30}{7}.\)
\(N=\frac{200}{189}+\frac{1}{14}=\)1.12962962963
\(M=\left(\frac{-7}{9}\cdot\frac{9}{7}\right)\cdot\left(\frac{15}{49}\cdot\frac{14}{15}\right)\cdot15\)
\(M=\left(-1\right)\cdot\frac{2}{7}\cdot15\)
\(M=\frac{-30}{7}\)
\(N=\frac{5}{9}\cdot\frac{4}{7}\cdot\frac{10}{3}+\frac{3}{9}\cdot\frac{3}{7}\cdot\frac{1}{2}\)
\(N=\frac{200\cdot2}{189\cdot2}+\frac{9\cdot3}{126\cdot3}\)
\(N=\frac{400}{378}+\frac{27}{378}\)
\(N=\frac{61}{51}\)
T i ck nha
a)\(\frac{11^4.6-11^5}{11^4-11^5}:\frac{9^8.3-9^9}{9^8.5+9^8.7}\)
\(=1.6:\frac{9^8.3-9^8.9}{9^8.\left(5+7\right)}\)
\(=6:\frac{9^8.\left(3-9\right)}{9^8.12}\)
\(=6:\frac{9^8.\left(-6\right)}{9^8.12}\)
\(=6:\left(-\frac{6}{12}\right)\)
\(=6:\left(-\frac{1}{2}\right)\)
\(=-12\)
b) 3/5 : ( -1/5-1/6)+3/5:(-1/3-16/15) ( mình chuyển về ps luôn )
=3/5: (-11/30) + 3/5 : (-7/5)
=3/5:[-11/30+(-7/5)]
=3/5:53/30
=18/53
c) (1/2-13/14):5/7-(-2/21+1/7):5/7
= -3/7:5/7-1/21:5/7
=(-3/7-1/21):5/7
=-10/21:5/7
=-2/3
câu b vá c mình làm tắt nha. chúc bạn học tốt
a/ \(\frac{-9}{10}.\frac{5}{14}+\frac{1}{10}.\left(\frac{-9}{2}\right)+\frac{1}{7}.\left(-\frac{9}{10}\right)\)
= \(-\frac{9}{10}.\left(\frac{5}{14}+\frac{1}{7}\right)+\frac{1}{10}.\left(-\frac{9}{2}\right)\)
= \(-\frac{9}{10}.\frac{1}{2}+\frac{1}{10}.\left(-\frac{9}{2}\right)\)
= \(\frac{-9}{20}+\left(-\frac{9}{20}\right)=\frac{-18}{20}=\frac{-9}{10}\)
b/ \(\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{6}+\frac{1}{11}\right).132\)
\(=\left(\frac{1}{2}.132\right)+\left(\frac{1}{3}.132\right)+\left(\frac{1}{4}.132\right)+\left(\frac{1}{6}.132\right)\)\(+\left(\frac{1}{11}.132\right)\)
\(=66+44+33+22+12=177\)
c/ \(-\frac{2}{3}.\left(\frac{8}{9}.\frac{8}{13}-\frac{8}{27}.\frac{8}{13}+\frac{4}{3}.\frac{22}{39}\right)\)
= \(-\frac{2}{3}.\left[\frac{8}{13}\left(\frac{8}{9}-\frac{8}{27}\right)+\frac{88}{117}\right]\)
= \(-\frac{2}{3}.\left(\frac{8}{13}.\frac{16}{27}+\frac{88}{117}\right)\)
= còn lại làm nốt nha! bận ròy
\(\frac{-9}{10}.\frac{5}{14}+\frac{1}{10}.\frac{-9}{2}+\frac{1}{7}.\frac{-9}{10}\)
\(=\frac{-9}{10}.\frac{5}{14}+\frac{-9}{10}.\frac{1}{2}+\frac{1}{7}.\frac{-9}{10}\)
\(=\frac{-9}{10}.\left(\frac{5}{14}+\frac{1}{2}+\frac{1}{7}\right)=\frac{-9}{10}.1=\frac{-9}{10}\)