K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2023

1+1=3 :)))

15 tháng 8 2018

A=(2/3+3/4+...+99/100)x(1/2+2/3+3/4+...+98/99)-(1/2+2/3+...+99/100)x(2/3+3/4+4/5+...98/99)

ta cho nó dài hơn như sau

A=(2/3+3/4+4/5+5/6+....+98/99+99/100)

ta thấy các mẫu số và tử số giống nhau nên chệt tiêu các số

2:3:4:5...99 vậy ta còn các số 2/100

ta làm vậy với(1/2+2/3+3/4+.....+98/99) thi con 1/99

làm vậy với câu (1/2+2/3+...+99/100) thì ra la 1/100

vậy với (2/3+3/4+...+98/99) ra 2/99

xùy ra ta có 2/100.1/99-1/100.2/99=1/50x1/99-1/100x2/99=tự tinh nhe mình ngủ đây

9 tháng 5 2017

Ta có :\(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

=\(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}=\)\(\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)\)\(+...+\left(1-\frac{1}{100}\right)\)

=\(\left(1+1+1+....+1\right)\)\(-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)

=             \(99-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)

=  \(100-1-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)

=\(100-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)= vế trên (đpcm)

9 tháng 5 2017

\(S=100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(S=\left(1+1+...+1\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(S=\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+...+\left(1-\frac{1}{100}\right)\)
\(S=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)
\(\RightarrowĐPCM\)

11 tháng 3 2019

Tách 100 thành 100 số 1

Ta có: TS=\(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)=100-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{100}=\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+...+\left(1-\frac{1}{100}\right)\)

=\(0+\frac{1}{2}+\frac{2}{3}+..+\frac{99}{100}=\frac{1}{2}+\frac{2}{3}+..+\frac{99}{100}\)=MS

=> Phân số trên=1

22 tháng 2 2017

Giả sử \(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)

\(\Rightarrow100=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}+1+\frac{1}{2}+...+\frac{1}{100}\)

\(\Rightarrow100=1+\left(\frac{1}{2}+\frac{1}{2}\right)+\left(\frac{1}{3}+\frac{2}{3}\right)+...+\left(\frac{99}{100}+\frac{1}{100}\right)\)

\(\Rightarrow100=1+1+1+...+1\) (100 chữ số 1)

\(\Rightarrow100=100\)

Vậy \(100-\left(1+\frac{1}{2}+...+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)

22 tháng 1 2017

\(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=\left(1+1+1+...+1\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+...+\left(1-\frac{1}{100}\right)\)

\(=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\) ( ĐPCM )

1 tháng 4 2016

\(100-\left(1+\frac{1}{2}+\frac{1}{3}+....................+\frac{1}{100}\right)\)

\(=100\cdot1-1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-..........................-\frac{1}{100}\)

\(=1-1+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{4}\right)+.......................+\left(1-\frac{1}{100}\right)\)

\(=0+\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+..................+\frac{99}{100}\left(ĐPCM\right)\)

1 tháng 4 2016

áp dụng quy tắc dấu ngoặc ta có: 100 - ( 1+1/2+1/3+...+1/100) = 100 - 1 - 1/2 - 1/3 - ...-1/100

                                                                                            =( 1-1/2)+(1-1/3)+(1-1/4)+...+(1-1/100)    / có 100 số hạng

                                                                                            =1/2+2/3+3/4+...+99/100