K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2018

ta có: \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}\)

\(\Rightarrow\frac{1}{3}A=\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{100}}+\frac{1}{3^{101}}\)

\(\Rightarrow A-\frac{1}{3}A=\frac{1}{3}-\frac{1}{3^{101}}< \frac{1}{3}\)

\(\Rightarrow\frac{2}{3}A< \frac{1}{3}\)

\(\Rightarrow A< \frac{1}{3}:\frac{2}{3}\)

\(\Rightarrow A< \frac{1}{2}\)

18 tháng 2 2017

vế trước lớn hơn

16 tháng 4 2017

Ta có: \(\frac{1}{2}A=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{100}{2^{101}}\)

\(A-\frac{1}{2}A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}-\frac{100}{2^{101}}\)

Ta có: \(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}=1-\frac{1}{2^{100}}< 1\)

\(\Rightarrow\frac{1}{2}A< 1-\frac{100}{2^{101}}\)

\(\Rightarrow A< 2-\frac{200}{2^{101}}< 2\)

Vậy A<2

29 tháng 9 2015

Đặt \(K=\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^{99}}\)

\(3K=1+\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^{98}}\)

\(3K-K=1+\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^{98}}-\left(\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^{99}}\right)\)

\(2K=\)\(1-\frac{1}{3^{99}}\)

\(K=\frac{1-\frac{1}{3^{99}}}{2}\)

Có \(1-\frac{1}{3^{99}}\) < \(\frac{1}{2}\)

\(\Rightarrow K\) < \(\frac{1}{2}\)

Vậy \(\left(\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^{99}}\right)\) < \(\frac{1}{2}\)

 

17 tháng 2 2018

1) \(+2x+3y⋮17\)

\(\Rightarrow26x+39y⋮17\)

\(\Rightarrow\left(9x+5y\right)+17x+34y⋮17\)

Mà \(17x+34y⋮17\)

\(\Rightarrow9x+5y⋮17\)

\(+9x+5y⋮17\)

\(\Rightarrow36x+20y⋮17\)

\(\Rightarrow\left(2x+3y\right)+34x+17y⋮17\)

Mà \(34x+17y⋮17\)

\(\Rightarrow2x+3y⋮17\)