Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=1-(1/3.5+1/3.7+1//7.9+...+1/55.57)
=1-1/2.(2/3.5+2/5.7+2/7.9+...+2/55.57)
=1-1/2(1/3-1/5+1/5-1/7+1/7-1/9+...+1/55-1/57)
=1-1/2(1/3-1/57)
=1-1/2.18/57
=1-9/57
=48/57
=
1-(1/3.5+1/5.7+1/7.9+....+1/53.55+1/55.57)
=1-1/2.[1/3-1/5+1/5-1/7+1/7-1/9+...+1/53-1/55+1/55-1/57]
=1-1/2.[1/3-1/57]
=1-1/2.54/171
=1-28/171
=143/171.
Ta thấy dãy số trên khi quy đồng mẫu số chứa lũy thừa của 3 với số mũ lớn nhất là 34 => khi quy đồng mẫu số, các phân số đều có tử chia hết cho 3 chỉ có phân số 1/81 có tử không chia hết cho 3
=> S có tử không chia hết cho 3, mẫu chia hết cho 3, không là số tự nhiên (đpcm)
bài này còn có 1 vài cách nữa nhưng nó hơi dài nên mk lm cách này
a) \(\frac{790^4}{79^4}=\frac{79^4.10^4}{79^4}=10^4=10000\)
b) \(\frac{3^2}{0,375^2}=\frac{0,375^2.8^2}{0,375^2}=8^2=64\)
c) \(3^2.\frac{1}{243}.81^2.\frac{1}{3^3}=3^2.3^{-5}.3^8.3^{-3}=3^2=9\)
d) \(\left(4.2^5\right):\left(2^3.\frac{1}{16}\right)=2^7:\left(2^3.2^{-4}\right)=2^7:2^{-1}=2^7:\frac{1}{2}=2^8\)
\(A=\frac{9}{8}-\frac{8}{9}+\frac{3}{25}+\frac{1}{4}-\frac{5}{16}+\frac{19}{25}-\frac{1}{9}+\frac{2}{25}-\frac{1}{81}\)
\(A=\left(\frac{9}{8}+\frac{1}{4}-\frac{5}{16}\right)-\left(\frac{8}{9}+\frac{1}{9}-\frac{1}{81}\right)+\left(\frac{3}{25}+\frac{19}{25}+\frac{2}{25}\right)\)
\(A=\frac{17}{16}-\frac{80}{81}+\frac{24}{25}\)
\(A=\frac{33529}{32400}\)
a) \(\frac{x-3}{5}=\frac{4}{9}\)
=> ( x - 3) . 9 = 20
=> 9x - 27 = 20
=> 9x = 47
=> x = \(\frac{47}{9}\)
b) \(\left(x-\frac{1}{4}\right)^2:3^2=81\)
\(\Rightarrow\left(x-\frac{1}{3}\right)^2:9=81\)
\(\Rightarrow\left(x-\frac{1}{4}\right)^2=729\)
\(\Rightarrow x-\frac{1}{4}=27\) hoặc \(x-\frac{1}{4}=-27\)
+) \(x-\frac{1}{4}=27\Rightarrow x=\frac{109}{4}\)
+) \(x-\frac{1}{4}=-27\Rightarrow x=\frac{-107}{4}\)
c, \(\frac{-32}{-2^n}=4\)
\(\Rightarrow-2^n=-32:4\)
\(\Rightarrow-2^n=-8\)
\(\Rightarrow-2^n=-2^3\Rightarrow n=3\)
d, \(\frac{8}{2^n}=2\)
\(\Rightarrow2^n=8:2\)
\(\Rightarrow2^n=4\)
\(\Rightarrow2^n=2^2\Rightarrow n=2\)
e, \(\frac{25^3}{5^n}=25\)
\(\Rightarrow5^n=25^3:25\)
\(\Rightarrow5^n=25^2\)
\(\Rightarrow5^n=5^4\Rightarrow n=4\)
i , \(8^{10}:2^n=4^5\)
\(\Rightarrow2^n=8^{10}:4^5\)
\(\Rightarrow2^n=\left(2^3\right)^{10}:\left(2^2\right)^5\)
\(\Rightarrow2^n=2^{30}:2^{10}\)
\(\Rightarrow2^n=2^{20}\Rightarrow n=20\)
k, \(2^n.81^4=27^{10}\)
\(\Rightarrow2^n=27^{10}:81^4\)
\(\Rightarrow2^n=\left(3^3\right)^{10}:\left(3^4\right)^4\)
\(\Rightarrow2^n=3^{30}:3^{16}\)
\(\Rightarrow2^n=3^{14}\)
\(\Rightarrow2^n=4782969\)Không chia hết cho 2 nên ko có Gt n thỏa mãn
a) \(A=\frac{\frac{1}{11}-\frac{1}{13}-\frac{1}{17}}{\frac{5}{11}-\frac{5}{13}-\frac{5}{17}}+\frac{\frac{2}{3}-\frac{2}{9}-\frac{2}{27}+\frac{2}{81}}{\frac{7}{3}-\frac{7}{9}-\frac{7}{27}+\frac{7}{81}}\)
\(=\frac{\frac{1}{11}-\frac{1}{13}-\frac{1}{17}}{5\left(\frac{1}{11}-\frac{1}{13}-\frac{1}{17}\right)}+\frac{2\left(\frac{1}{3}-\frac{1}{9}-\frac{1}{27}+\frac{1}{81}\right)}{7\left(\frac{1}{3}-\frac{1}{9}-\frac{1}{27}+\frac{1}{81}\right)}\)
\(=\frac{1}{5}+\frac{2}{7}\)
\(=\frac{7}{35}+\frac{10}{35}\)
\(=\frac{17}{35}\)
Vậy \(A=\frac{17}{35}\)
b) \(B=\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}+...+\frac{5^2}{56.61}\)
\(=5.\left(\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+...+\frac{5}{56.61}\right)\)
\(=5.\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+...+\frac{1}{56}-\frac{1}{61}\right)\)
\(=5.\left(\frac{1}{11}-\frac{1}{61}\right)\)
\(=5.\left(\frac{61}{671}-\frac{11}{671}\right)\)
\(=5.\frac{50}{671}\)
\(=\frac{250}{671}\)
Vậy \(B=\frac{250}{671}\)
C = \(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right).......\left(\frac{1}{9^2}-1\right)\left(\frac{1}{10^2}-1\right)\)
= \(\frac{-3}{2^2}.\frac{-8}{3^2}.............\frac{-80}{9^2}.\frac{-99}{10^2}\)
= \(-\left(\frac{1.3}{2^2}.\frac{2.4}{3^2}..........\frac{8.10}{9^2}.\frac{9.11}{10^2}\right)\)
= \(-\frac{\left(1.2.3......8.9\right)\left(3.4.5........10.11\right)}{\left(2.3.4......9.10\right)\left(2.3.4......9.10\right)}=-\frac{1.11}{10.2}=-\frac{11}{20}\)
đây nhé