Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi n;n+1;n+2;n+3;n+4 là 5 số tự nhiên liên tiếp
\(.\)Nếu n \(⋮\)5 \(\Rightarrow\)đpcm
\(.\)Nếu n không chia hết cho 5 => n = 5k + 1 hoặc n = 5k + 2 hoặc n = 5k + 3 hoặc n = 5k + 4
- Với n = 5k + 1 => n + 4 = 5k + 5 \(⋮\)5
- Với n = 5k + 2 => n + 3 = 5k + 5 \(⋮\)5
- Với n = 5k + 3 => n + 2 = 5k + 5 \(⋮\)5
- Với n = 5k + 4 => n + 1 = 5k + 5 \(⋮\)5
Vậy trong 5 số tự nhiên liên tiếp có một số luôn chia hết cho 5
Gọi 5 số tự nhiên liên tiếp là a, a + 1, a+2, a+3,a+4
Ta có:
a+a+1+a+2+a+3+a+4
= ( a+a+a+a+a) + ( 1 + 2 + 3 + 4 )
= 5.a+10
= 5. ( a + 2 ) chia hết cho 5
Vậy tổng của 5 số tự nhiên liên tiếp chia hết cho 5
Ta có : \(\frac{x-1}{12}=\frac{3}{x-1}\)
\(\Rightarrow\left(x-1\right).\left(x-1\right)=12.3\)
\(\Rightarrow\left(x-1\right)^2=36\)
\(\Rightarrow\orbr{\begin{cases}\left(x-1\right)^2=6^2\\\left(x-1\right)^2=\left(-6\right)^2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-1=6\\x-1=-6\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=7\\x=-5\end{cases}}\)
Vậy \(x=7;x=-5\)
\(\frac{x-1}{12}=\frac{3}{x-1}ĐKXĐ\left(x\ne1\right)\)
\(\left(x-1\right)^2=36\)
\(\left(x-1\right)^2=6^2\)
\(\Rightarrow\orbr{\begin{cases}x-1=6\\x-1=-6\end{cases}\Rightarrow\orbr{\begin{cases}x=7\\x=-5\end{cases}}}\)tm ))
n+3\(⋮\)n+1
=> n+1+2\(⋮\)n+1
=> 2\(⋮\)n+1
=> n+1 \(\in\)1,2,-1,-2
=> n \(\in\)-2,1-3,-4
( x + 1 ) + ( x + 2 ) + ( x + 3 ) + ... ( x + 100 ) = 5750
Số số hạng = số x trong dãy là : ( 100 - 1 ) : 1 + 1 = 100 số
Tổng là : ( 100 + 1 ) x 100 : 2 = 5050
100x = 5750 - 5050
100x = 700
x = 700 : 100
x = 7
\(\frac{x}{4}=\frac{18}{x+1}\)
\(\Leftrightarrow x\left(x+1\right)=72\)
\(\Leftrightarrow x=8\)
P/s tham khảo nha