Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\frac{2x+2}{3x-6}=\frac{2x-6}{3x-15}\)
\(\Rightarrow\frac{2\left(x+1\right)}{3\left(x-2\right)}=\frac{2\left(x-3\right)}{3\left(x-5\right)}\)
\(\Rightarrow\frac{2}{3}\cdot\frac{x+1}{x-2}=\frac{2}{3}\cdot\frac{x-3}{x-5}\)
\(\Rightarrow\frac{x+1}{x-2}=\frac{x-3}{x-5}\)
\(\Rightarrow\frac{x+1}{x-2}-1=\frac{x-3}{x-5}-1\)
\(\Rightarrow\frac{x+1-x+2}{x-2}=\frac{x-3-x+5}{x-5}\)
\(\Rightarrow\frac{3}{x-2}=\frac{2}{x-5}\)
\(\Rightarrow3\left(x-5\right)=2\left(x-2\right)\)
\(\Rightarrow3x-15=2x-4\)
\(\Rightarrow3x-2x=-4+15\)
\(\Rightarrow x=11\)
\(\frac{2x+2}{3x-6}=\frac{2x-6}{3x-15}\)
\(\Rightarrow\left(2x+2\right)\left(3x-15\right)=\left(2x-6\right)\left(3x-6\right)\)
\(\Rightarrow6x^2-30x+6x-30=6x^2-12x-18x+36\)
\(\Rightarrow6x^2-30x+6x-6x^2+12x+18x=36+30\)
\(\Rightarrow6x=66\)
\(\Rightarrow x=11\)
k mk nha
\(A=\left(\frac{1+2x}{2.\left(2+x\right)}-\frac{x}{3.\left(x-2\right)}+\frac{2x^2}{3.\left(4-x^2\right)}\right).\frac{24-12x}{6+13x}\)
\(=\left[\frac{3.\left(1+2x\right)\left(2-x\right)-2x\left(x+2\right)+4x^2}{2.3.\left(x+2\right)\left(2-x\right)}\right].\frac{24-12x}{6+13x}\)
\(=\frac{6+9x-6x^2-2x^2-4x+4x^2}{6.\left(4-x^2\right)}.\frac{24-12x}{6+13x}\)
\(=\frac{6+5x-4x^2}{6.\left(4-x^2\right)}.\frac{12.\left(2-x\right)}{6+13x}\) \(=\frac{\left(6+5x-4x^2\right).2}{\left(x+2\right)\left(6+13x\right)}=\frac{12+10x-8x^2}{13x^2+32x+12}\)
Mình làm cho bạn 2 câu khó hơn còn mấy câu còn lại dungf phương pháp quy đồng rồi chuyển vế là tính được mà
c, <=> [(x-1)/2009 ]-1 +[ (x-2)/2008] -1 = [(x-3)/2007]-1 +[(x-4)/2006]-1
<=> (x-2010)/2009 + (x-2010)/2008 = (x-2010)/2007 + (x-2010)/2006
<=> (x-2010)*(1/2009+1/2008-1/2007-1/2006)=0
=> x-2010=0 => x=2010
d, TH1 : cả hai cùng âm
=>> 2X-4 <O => X< 2
Và 9-3x<0 =>> x> 3
=>> loại
Th2 cả hai cùng dương
2x-4>O => x>2
Và 9-3x>O => x<3
=>> 2<x<3 (tm)
1) \(\frac{x-1}{x-5}=\frac{6}{7};\left(x-1\right).7=\left(x-5\right).6\)
7x - 7 = 6x - 30
=> 7x - 6x = -30 - (-7)
x = -23
2) \(\frac{x-1}{3}=\frac{x+3}{5};\left(x-1\right).5=\left(x+3\right).3\)
5x - 5 = 3x + 9
=> 5x - 3x = 9 - (-5)
2x = 14
x = 7
3) \(\frac{3}{7}=\frac{2x+1}{3x+5};\left(3x+5\right).3=\left(2x+1\right).7\)
9x + 15 = 14x + 7
9x - 14x = 7-15
5x = -8
x = -8/5
1) =>\(\hept{\begin{cases}x-1=6\\x-5=7\end{cases}=>\hept{\begin{cases}x=6+1=7\\x=7+5=13\end{cases}}}\)
Vậy x\(\varepsilon\){7;13}
2)
- Ta chứng minh bất đẳng thức phụ dưới đây: \(\frac{1}{\sqrt{x}\left(x+1\right)}=\frac{\sqrt{x}}{x\left(x+1\right)}=\sqrt{x}\left(\frac{1}{x}-\frac{1}{x+1}\right)=\sqrt{x}\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\right)\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x+1}}\right)\)\(=\left(1+\frac{\sqrt{x}}{\sqrt{x+1}}\right)\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\right)< 2\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\right)\)
Áp dụng : \(\frac{1}{\sqrt{1}.2}< 2.\left(1-\frac{1}{\sqrt{2}}\right)\)
\(\frac{1}{\sqrt{2}.3}< 2.\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)\)
...................................
\(\frac{1}{\sqrt{2015}.2016}< 2.\left(\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\right)\)
Cộng các BĐT trên với nhau được : \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2016\sqrt{2015}}< 2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\right)=2\left(1-\frac{1}{\sqrt{2016}}\right)< 2\left(1-\frac{1}{\sqrt{2025}}\right)=\frac{88}{45}\)
Từ đó suy ra đpcm
Cái ............... là gì vậy bn
a) Đặt \(x-1=a\)
\(pt\Leftrightarrow\frac{13}{a}+\frac{5}{2a}=\frac{6}{3a}\)
\(\Leftrightarrow\frac{31}{2a}=\frac{6}{3a}\)
\(\Leftrightarrow\frac{31}{2}=2\)(vô lí)
Vậy pt vô nghiệm
a) \(\frac{13}{x-1}+\frac{5}{2x-2}=\frac{6}{3x-3}\)
\(\frac{13}{x-1}+\frac{5}{2\left(x-1\right)}=\frac{6}{3\left(x-1\right)}\)
\(\frac{13}{x-1}+\frac{5}{2\left(x-1\right)}=\frac{2}{x-1}\)
\(\frac{31}{2\left(x-1\right)}=\frac{2}{x-1}\)
\(\frac{31}{2}=2\)
=> không có x thỏa mãn đề bài.
b) \(\frac{1}{x-1}+\frac{-2}{3}\left(\frac{3}{4}-\frac{6}{5}\right)=\frac{5}{2-2x}\)
\(\frac{1}{x-1}+\frac{-2}{3}.\frac{-9}{20}=\frac{5}{2\left(1-x\right)}\)
\(\frac{1}{x-1}-\frac{-18}{60}=\frac{5}{2\left(1-x\right)}\)
\(\frac{1}{x-1}+\frac{3}{10}=\frac{5}{2\left(1-x\right)}\)
\(10\left(1-x\right)+3\left(x-1\right)\left(1-x\right)=25\left(x-1\right)\)
\(7-4x-3x^2=25x-25\)
\(7-4x-3x^2-25x+25=0\)
\(32-29x-3x^2=0\)
\(3x^2+29x-30=0\)
\(3x^2+32x-3x-32=0\)
\(x\left(3x+32\right)-\left(3x+32\right)=0\)
\(\left(3x+32\right)\left(x-1\right)=0\)
\(\orbr{\begin{cases}3x+32=0\\x-1=0\end{cases}}\)
\(\orbr{\begin{cases}x=-\frac{32}{3}\\x=1\end{cases}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2x+2}{3x-6}=\frac{2x-6}{3x-15}=\frac{\left(2x+2\right)-\left(2x-6\right)}{\left(3x-6\right)-\left(3x-15\right)}=\frac{2x+2-2x+6}{3x-6-3x+15}=\frac{8}{9}\)
=> (2x + 2).9 = (3x - 6).8
=> 18x + 18 = 24x - 48
=> 18 + 48 = 24x - 18x
=> 6x = 66
=> x = 66 : 6 = 11
=> (2x+2)(3x-15) = (3x-6)(2x-6)
=> 6x2-30x+6x-30 = 6x2-18x-12x+36
=> 6x2-30x+6x-30-6x2+18x+12x-36 = 0
=> 6x - 96 = 0
=> 6x = 96
=> x = 96/6
=> x = 16
Vậy x = 16