K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2019

\(\frac{2x}{5}+\frac{3-2x}{3}\ge\frac{3x+2}{2}\)

\(\Rightarrow\frac{12x}{30}+\frac{10\left(3-2x\right)}{30}-\frac{15\left(3x+2\right)}{30}\ge0\)

\(\Rightarrow12x+30-20x-45x-30\ge0\)

\(\Rightarrow-53x\ge0\)\(\Leftrightarrow x\le0\)\(\left(1\right)\)

\(\frac{x}{2}+\frac{3-2x}{5}\ge\frac{3x-5}{6}\)

\(\Rightarrow\frac{15x}{30}+\frac{6\left(3-2x\right)}{30}-\frac{5\left(3x-5\right)}{30}\ge0\)

\(\Rightarrow15x+18-12x-15x+25\ge0\)

\(\Rightarrow-12x\ge-43\)\(\Rightarrow12x\le43\Leftrightarrow x\le\frac{43}{12}\)\(\left(2\right)\)

Từ ( 1 ) và ( 2 ) ta có tập nghiệm chung của cả hai phương trình là \(x\le0\)

20 tháng 4 2017

a)\(\frac{3x-2}{5}\ge\frac{x}{2}+0,8\) va \(1-\frac{2x-5}{6}>\frac{3-x}{4}\)

 \(\cdot\frac{3x-2}{5}\ge\frac{x}{2}+0,8\)

  \(=\frac{2\left(3x-2\right)}{10}\ge\frac{5x}{10}+\frac{8}{10}\)

   \(\Rightarrow2\left(3x-2\right)\ge5x+8\)

   \(=6x-4\ge5x+8\)

   \(=6x-5x\ge8+4\)

    \(x\ge12\)(1)

\(\cdot1-\frac{2x-5}{6}>\frac{3-x}{4}\)

 \(=\frac{12}{12}-\frac{2\left(2x-5\right)}{12}>\frac{3\left(3-x\right)}{12}\)

  \(\Rightarrow12-2\left(2x-5\right)>3\left(3-x\right)\)

  \(=12-4x+10>9-3x\)

  \(=-4x+3x>9-12-10\)

   \(=-x>-13\)

    \(=x< 13\) (2)

Từ (1) và (2) => \(13>x\ge12\)=> x=12

17 tháng 2 2018

b, \(\frac{3x-2}{5}\ge\frac{x+1,6}{2}\)

=> \(6x-4\ge5x+8\)

=> \(x-12\ge0\)

=> \(x\ge12\)

bpt 2: \(\frac{6-2x+5}{6}>\frac{3-x}{4}\)

=> \(\frac{11-2x}{6}>\frac{3-x}{4}\)

=> \(44-8x>18-6x\)

=> \(x< 13\)

Vậy để t/m cả 2 bpt thì : \(12\le x< 13\)

17 tháng 2 2018

a, \(\frac{x^2+x^2-4}{x\left(x-2\right)}>2\) (Đk : \(x\ne\left(0;2\right)\))

=> \(2x^2-4>2x^2-4x\)

=> \(4x-4=4\left(x-1\right)>0\)

=> \(x>1\)(t/m) 

NV
8 tháng 4 2019

\(\frac{3x-2}{5}\ge\frac{x}{2}+\frac{4}{5}\Leftrightarrow2\left(3x-2\right)\ge5x+8\)

\(\Leftrightarrow x\ge12\) (1)

\(1-\frac{2x-5}{6}>\frac{3-x}{4}\Leftrightarrow12-2\left(2x-5\right)>3\left(3-x\right)\)

\(\Leftrightarrow22-4x>9-3x\Leftrightarrow x< 13\) (2)

Từ (1) và (2) \(\Rightarrow12\le x< 13\)

\(x\in Z\Rightarrow x=12\)