K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2019

Ta có: \(\frac{5x}{2}=\frac{6y}{5}=\frac{7z}{3}\) => \(\frac{x}{\frac{2}{5}}=\frac{y}{\frac{5}{6}}=\frac{z}{\frac{3}{7}}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x}{\frac{2}{5}}=\frac{y}{\frac{5}{6}}=\frac{z}{\frac{3}{7}}=\frac{y-x-z}{\frac{5}{6}-\frac{2}{5}-\frac{3}{7}}=\frac{\frac{1}{105}}{\frac{1}{210}}=2\)

=> \(\hept{\begin{cases}\frac{x}{\frac{2}{5}}=2\\\frac{y}{\frac{5}{6}}=2\\\frac{z}{\frac{3}{7}}=2\end{cases}}\) => \(\hept{\begin{cases}x=\frac{4}{5}\\y=\frac{5}{3}\\z=\frac{6}{7}\end{cases}}\)

a, \(3x=5y=7z\Rightarrow\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{7}}\)

\(\Rightarrow\frac{2x}{\frac{2}{3}}=\frac{y}{\frac{1}{5}}=\frac{3z}{\frac{3}{7}}\)
Áp dụng t/c

\(\Rightarrow\frac{2x}{\frac{2}{3}}=\frac{y}{\frac{1}{5}}=\frac{3z}{\frac{3}{7}}=\frac{2x-y+3z}{\frac{2}{3}-\frac{1}{5}+\frac{3}{7}}=\frac{188}{\frac{105}{94}}=210\)

\(\frac{x}{\frac{1}{3}}=210\Rightarrow x=70\)

\(\frac{y}{\frac{1}{5}}=210\Rightarrow y=42\)

\(\frac{z}{\frac{1}{7}}=210\Rightarrow z=30\)

5 tháng 10 2019

a) Ta có:

\(\frac{x}{-3}=\frac{y}{7}\Rightarrow\frac{x}{6}=\frac{y}{-14}.\)

\(\frac{y}{-2}=\frac{z}{5}\Rightarrow\frac{y}{-14}=\frac{z}{35}.\)

=> \(\frac{x}{6}=\frac{y}{-14}=\frac{z}{35}.\)

=> \(\frac{-2x}{-12}=\frac{4y}{-56}=\frac{5z}{175}\)\(-2x-4y+5z=146.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{-2x}{-12}=\frac{4y}{-56}=\frac{5z}{175}=\frac{-2x-4y+5z}{\left(-12\right)-\left(-56\right)+175}=\frac{146}{219}=\frac{2}{3}.\)

\(\left\{{}\begin{matrix}\frac{x}{6}=\frac{2}{3}\Rightarrow x=\frac{2}{3}.6=4\\\frac{y}{-14}=\frac{2}{3}\Rightarrow y=\frac{2}{3}.\left(-14\right)=-\frac{28}{3}\\\frac{z}{35}=\frac{2}{3}\Rightarrow z=\frac{2}{3}.35=\frac{70}{3}\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(4;-\frac{28}{3};\frac{70}{3}\right).\)

Chúc bạn học tốt!

5 tháng 10 2019

a) Có: \(\frac{x}{-3}=\frac{y}{7};\frac{y}{-2}=\frac{z}{5}\Rightarrow\frac{x}{6}=\frac{y}{-14}=\frac{z}{35}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{6}=\frac{y}{-14}=\frac{z}{35}=\frac{-2x-4y+5z}{\left(-2\right)\cdot6-4\cdot\left(-14\right)+5\cdot35}=\frac{146}{219}=\frac{2}{3}\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{6}=\frac{2}{3}\Rightarrow x=\frac{2}{3}\cdot6=4\\\frac{y}{-14}=\frac{2}{3}\Rightarrow y=\frac{2}{3}\cdot\left(-14\right)=\frac{-28}{3}\\\frac{z}{35}=\frac{2}{3}\Rightarrow z=\frac{2}{3}\cdot35=\frac{70}{3}\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(4;\frac{-28}{3};\frac{70}{3}\right)\)

b) Có: \(-3x=4y;6y=7z\Rightarrow\frac{x}{4}=\frac{y}{-3};\frac{y}{7}=\frac{z}{6}\Rightarrow\frac{x}{28}=\frac{y}{-21}=\frac{z}{-18}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{28}=\frac{y}{-21}=\frac{z}{-18}=\frac{x-2y+3z}{28-2\cdot\left(-21\right)+3\cdot\left(-18\right)}=\frac{-48}{16}=-3\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{28}=-3\Rightarrow x=\left(-3\right)\cdot28=-84\\\frac{y}{-21}=-3\Rightarrow y=\left(-3\right)\cdot\left(-21\right)=63\\\frac{z}{-18}=-3\Rightarrow z=\left(-3\right)\cdot\left(-18\right)=54\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(-84;63;54\right)\)

20 tháng 10 2019

a) Ta có: \(\frac{1+4y}{13}=\frac{1+6y}{19}.\)

\(\Rightarrow\left(1+4y\right).19=\left(1+6y\right).13\)

\(\Rightarrow19+76y=13+78y\)

\(\Rightarrow19-13=78y-76y\)

\(\Rightarrow6=2y\)

\(\Rightarrow y=6:2\)

\(\Rightarrow y=3.\)

Thay \(y=3\) vào đề bài ta được:

\(\frac{1+4.3}{13}=\frac{1+8.3}{5x}\)

\(\Rightarrow\frac{1+12}{13}=\frac{1+24}{5x}.\)

\(\Rightarrow\frac{13}{13}=\frac{25}{5x}\)

\(\Rightarrow1=\frac{25}{5x}\)

\(\Rightarrow5x=25:1\)

\(\Rightarrow5x=25\)

\(\Rightarrow x=25:5\)

\(\Rightarrow x=5\)

Vậy \(\left(x;y\right)=\left(5;3\right).\)

Chúc bạn học tốt!

20 tháng 10 2019

còn câu b. và c. nx ạ, nhờ bn giúp mk vs

9 tháng 7 2015

nhiều quá không ai làm đâu

17 tháng 8 2016

\(\Rightarrow\frac{5x}{5.10}=\frac{y}{6}=\frac{2z}{2.21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)

\(\Rightarrow\frac{5x}{50}+\frac{y}{6}-\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

\(\Rightarrow x=2.10=20\)

\(y=2.6=12\)

\(z=2.21=41\)

10 tháng 7 2021

Trả lời:

1, Ta có:  \(x+y=\frac{1}{2};y+z=\frac{1}{3};z+x=\frac{1}{4}\)

\(\Rightarrow x+y+y+z+z+x=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\)

\(\Rightarrow2x+2y+2z=\frac{13}{12}\)

\(\Rightarrow2\left(x+y+z\right)=\frac{13}{12}\)

\(\Rightarrow x+y+z=\frac{13}{24}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{13}{24}-\frac{1}{3}=\frac{5}{24}\\y=\frac{13}{24}-\frac{1}{4}=\frac{7}{24}\\z=\frac{13}{24}-\frac{1}{2}=\frac{1}{24}\end{cases}}\)

2, Ta có: \(x:y:z=3:5:\left(-2\right)\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\)

Áp dụng tc dãy tỉ số bằng nhau, ta có:

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}=\frac{5x-y+3z}{5.3-5+3.\left(-2\right)}=\frac{124}{4}=31\)

\(\Rightarrow\hept{\begin{cases}x=93\\y=155\\z=-62\end{cases}}\)

3, Ta có: \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\left(1\right)\)

\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\left(2\right)\)

Từ (1) và (2) => \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)

Áp dụng tc dãy tỉ số bằng nhau, ta có:

\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x-7y+5x}{3.21-7.14+5.10}=\frac{30}{15}=2\)

\(\Rightarrow\hept{\begin{cases}x=42\\y=28\\z=20\end{cases}}\)

12 tháng 7 2019

a

Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)

\(\Rightarrow x=2k+1;y=3k+2;z=4k+3\)

Thay vào,ta được:

\(2\left(2k+1\right)+3\left(3k+2\right)-\left(4k+3\right)=50\)

\(\Leftrightarrow4k+2+9k+6-4k-3=50\)

\(\Leftrightarrow9k+5=50\)

\(\Leftrightarrow9k=45\)

\(\Leftrightarrow k=5\)

12 tháng 7 2019

\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=\frac{5x-5}{10}=\frac{3y+9}{12}=\frac{4z-20}{24}\)

\(=\frac{5x-5-3y-9-4z+20}{10-12-24}=\frac{\left(5x-3y-4z\right)+\left(20-5-9\right)}{26}=\frac{46+6}{26}=2\)

\(\Rightarrow x=2\cdot2+1=5\)

\(y=4\cdot2-3=5\)

\(z=2\cdot6+5=17\)

Câu c tương tự như câu 1

11 tháng 10 2019

Ta có

\(\frac{x}{y}=\frac{3}{2};5x=7z\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{x}{7}=\frac{z}{5}\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{x}{10}=\frac{2y}{28}\)

Ap dụng  tính chất DTSBN

\(\frac{x}{21}=\frac{2y}{28}=\frac{z}{10}=\frac{x-2y+z}{21-28+10}=\frac{32}{3}\)

\(\hept{\begin{cases}\frac{x}{21}=\frac{32}{3}\Rightarrow x=224\\\frac{y}{14}=\frac{32}{3}\Rightarrow x=\frac{448}{3}\\\frac{z}{10}=\frac{32}{3}\Rightarrow x=\frac{320}{3}\end{cases}}\)

Bạn kiểm tra lại đề xem có sai, còn nếu mik sai thì mn kiểm tra xem sai ở đâu với

11 tháng 10 2019

Bạn còn thiếu 1 câu b mà

15 tháng 9 2019

Bài 1 : Sửa đề :

Tìm x,y,z 

\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z(1)\)

Ta có : \(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z(1)\)

Áp dụng tính chất bằng nhau của tỉ lệ thức ta được :

\(\frac{x+y+z}{2\left[x+y+z\right]}=x+y+z(2)\)

Nếu x + y + z = 0 thì từ 1 suy ra : x = 0 , y = 0 , z = 0

Nếu x + y + z \(\ne\)0 thì từ 2 suy ra \(\frac{1}{2}=x+y+z\), khi đó 1 trở thành :

\(\frac{x}{\frac{1}{2}-x+1}=\frac{y}{\frac{1}{2}-y+1}=\frac{z}{\frac{1}{2}-z-2}=\frac{1}{2}\)

Do đó : \(\hept{\begin{cases}2x=\frac{3}{2}-x\\2y=\frac{3}{2}-y\\2z=-\frac{3}{2}-z\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=-\frac{1}{2}\end{cases}}\)

Vậy có hai đáp số : \(\left[0,0,0\right]\)và \(\left[\frac{1}{2};\frac{1}{2};-\frac{1}{2}\right]\)

Bài 2 : Từ \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)

=> \(\frac{1+4y}{24}=\frac{1+2y+1+6y}{18+6x}\)

=> \(\frac{1+4y}{24}=\frac{2+8y}{2\left[9+3x\right]}\)

=> 9 + 3x = 24 => 3x = 15 => x = 5,y tự tìm

Tìm nốt bài cuối nhé