Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\hept{\begin{cases}x-y=20\\\frac{y-x}{xy}=\frac{1}{120}\end{cases}\Leftrightarrow}\hept{\begin{cases}x-y=20\\xy=-2400\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=x-20\\x\left(x-20\right)+2400=0\end{cases}}\)
Đến đây dễ rồi nhé
Lời giải:
a)
\(\frac{2A}{\sqrt{2}}=\frac{4+2\sqrt{3}}{2+\sqrt{4+2\sqrt{3}}}+\frac{4-2\sqrt{3}}{2-\sqrt{4-2\sqrt{3}}}=\frac{3+1+2\sqrt{3}}{2+\sqrt{3+1+2\sqrt{3}}}+\frac{3+1-2\sqrt{3}}{2-\sqrt{3+1-2\sqrt{3}}}\)
\(=\frac{(\sqrt{3}+1)^2}{2+\sqrt{(\sqrt{3}+1)^2}}+\frac{(\sqrt{3}-1)^2}{2-\sqrt{(\sqrt{3}-1)^2}}=\frac{(\sqrt{3}+1)^2}{2+\sqrt{3}+1}+\frac{(\sqrt{3}-1)^2}{2-(\sqrt{3}-1)}\)
\(=\frac{(\sqrt{3}+1)^2}{\sqrt{3}(\sqrt{3}+1)}+\frac{(\sqrt{3}-1)^2}{\sqrt{3}(\sqrt{3}-1)}=\frac{\sqrt{3}+1}{\sqrt{3}}+\frac{\sqrt{3}-1}{\sqrt{3}}=2\)
$\Rightarrow A=\sqrt{2}$
b)
\(B=\sqrt{10+2\sqrt{15}-2\sqrt{6}-2\sqrt{10}}=\sqrt{(8+2\sqrt{15})+2-2\sqrt{2}(\sqrt{3}+\sqrt{5})}\)
\(=\sqrt{(\sqrt{3}+\sqrt{5})^2+2-2\sqrt{2}(\sqrt{3}+\sqrt{5})}\)
\(=\sqrt{(\sqrt{3}+\sqrt{5}-\sqrt{2})^2}=\sqrt{3}+\sqrt{5}-\sqrt{2}\)
c)
\(C=\frac{\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}}{\sqrt{x^2-4x+4}}=\frac{\sqrt{(x-1)-2\sqrt{x-1}+1}+\sqrt{(x-1)+2\sqrt{x-1}+1}}{\sqrt{(x-2)^2}}\)
\(=\frac{\sqrt{(\sqrt{x-1}-1)^2}+\sqrt{(\sqrt{x-1}+1)^2}}{|x-2|}=\frac{|\sqrt{x-1}-1|+|\sqrt{x-1}+1|}{|x-2|}\)
Ta có :
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\)
\(\Rightarrow A>\frac{1}{2^2}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
\(\Leftrightarrow A>\frac{1}{2^2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2^2}+\frac{1}{3}-\frac{1}{10}=\frac{29}{60}\left(1\right)\)
Lại có :
\(A< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}\)
\(\Leftrightarrow A< \frac{1}{2^2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)
\(=\frac{1}{2^2}+\frac{1}{2}-\frac{1}{9}=\frac{23}{36}\left(2\right)\)
Mà \(\frac{23}{36}< \frac{24}{36}=\frac{2}{3}\left(3\right)\)
Từ (1), (2) và (3) suy ra \(\frac{29}{60}< A< \frac{2}{3}\)
a) \(\frac{\sqrt{7-4\sqrt{3}}}{\sqrt{2-\sqrt{3}}}\cdot\sqrt{2+\sqrt{3}}\)
\(=\frac{\sqrt{4-2.2.\sqrt{3}+3}}{\sqrt{2-\sqrt{3}}}\cdot\frac{\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(2-\sqrt{3}\right)^2}}{\sqrt{4-2\sqrt{3}}}\cdot\sqrt{\left(1+\sqrt{3}\right)^2}\)
\(=\frac{2-\sqrt{3}}{\sqrt{3}-1}\cdot\left(1+\sqrt{3}\right)\)
\(=\frac{\left(2-\sqrt{3}\right)\left(1+\sqrt{3}\right)^2}{2}\)
b) \(\sqrt{\frac{3}{20}}+\sqrt{\frac{1}{60}}-2\sqrt{\frac{1}{50}}\)
\(=\sqrt{\frac{1}{10}\cdot\frac{3}{2}}+\sqrt{\frac{1}{10}\cdot\frac{1}{6}}-2\sqrt{\frac{1}{10}\cdot\frac{1}{5}}\)
\(=\sqrt{\frac{1}{10}}\cdot\left(\sqrt{\frac{3}{2}}+\sqrt{\frac{1}{6}}-2\sqrt{\frac{1}{5}}\right)\)
\(=\frac{1}{\sqrt{10}}\cdot\left(\frac{\sqrt{6}}{2}+\frac{\sqrt{6}}{6}-\frac{2\sqrt{5}}{5}\right)\)
\(=\frac{1}{\sqrt{10}}\cdot\left(\frac{15\sqrt{6}+5\sqrt{6}-12\sqrt{5}}{6}\right)\)
\(=\frac{2.\left(5\sqrt{6}-3\sqrt{5}\right)}{3\sqrt{10}}\cdot\)
......