Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\left(\frac{1}{2}-\frac{1}{3}\right).6^x+6^{x+2}=6^{15}+6^{18}\)
\(\frac{1}{6}.6^x+6^{x+2}=6^{15}\left(1+6^3\right)\)
\(\frac{1}{6}.6^x\left(1+6^3\right)=6^{15}.217\)
\(6^{x-1}.217=6^{15}.217\)
\(6^{x-1}=6^{15}\)
\(x-1=15\)
\(x=16\)
b) \(\left(\frac{1}{2}-\frac{1}{6}\right).3^{x+4}-4.3^x=3^{16}-4.3^{13}\)
\(\frac{1}{3}.3^x.4\left(3^4-1\right)=3^{13}.4\left(3^3-1\right)\)
\(3^x.4.\left(3^3-1\right)=3^{13}.4.\left(3^3-1\right)\)
\(3^x=3^{13}\)
\(x=13\)
\(\left(\frac{1}{2}-\frac{1}{6}\right).\left(3^x.3^4\right)-4.3^x=3^{16}-4.3^{13}\)
=> \(\frac{1}{3}.3^x.3^4-4.3^x=3^{16}-4.3^{13}\)
=> \(3^x.3^4-4.3^x=\left(3^{16}-4.3^{13}\right):\frac{1}{3}\)
=> \(3^x.3^4-4.3^x=-386339074,3\)
=> \(3^x.\left(3^4-4\right)=-386339074,3\)
=> \(3^x.77=-386339074,3\)
=> \(3^x=-386339074,3:77\)
=> \(3^x=-5017390,575\)
=> x = ... chắc tự ngồi tính đc
\(B=\frac{2^{13}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
\(=\frac{2^{13}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{2^{12}.3^6+\left(2^3\right)^4.3^5}-\frac{5^{10}.7^3-\left(5^2\right)^5.\left(7^2\right)^2}{\left(5^3.7\right)^3+5^9.\left(2.7\right)^3}\)
\(=\frac{2^{13}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}.7^4}{5^9.7^3+5^9.2^3.7^3}\)
\(=\frac{2^{12}.3^4\left(2.3-1\right)}{2^{12}.3^5\left(3+1\right)}-\frac{5^{10}.7^3\left(1-7\right)}{5^9.7^3.\left(1+2^3\right)}\)
\(=\frac{2^{12}.3^4.5}{2^{12}.3^5.4}-\frac{5^{10}.7^3.\left(-6\right)}{5^9.7^3.9}\)
\(=\frac{5}{12}-\frac{-10}{3}=\frac{5}{12}+\frac{40}{12}=\frac{45}{12}=\frac{15}{4}=3\frac{3}{4}\)
a.\(\frac{1}{6}.6^x+6^x.36=6^{15}\left(1+6^3\right)\)
\(6^x.\frac{217}{6}=6^{15}.217\)
\(6^x=6^{16}\)
\(x=16\)
1/ \(\frac{9.5^{20}.27^9-3.9^{15}.25^9}{7.3^{29}.125^6-3.3^9.15^{19}}\)
\(=\frac{5^{20}.3^{29}-3^{31}.5^{18}}{7.3^{29}.5^{18}-3^{29}.5^{19}}=\frac{3^{29}.5^{18}.\left(25-9\right)}{3^{29}.5^{18}.\left(7-5\right)}=\frac{16}{2}=8\)
CÁC BÀI CÒN LẠI TƯƠNG TỰ HẾT NHÉ E
\(A=\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6}-\frac{5^{10}.7^4-25^5.49^2}{\left(125.7\right)3+5^9.\left(14\right)^3}\)
\(=\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{\left(2^2\right)^6.3^6+\left(2^3\right)^4.3^5}-\frac{5^{10}.7^3-\left(5^2\right)^5.\left(7^2\right)^2}{125^3.7^3+5^9.\left(2.7\right)^3}\)
\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}.7^4}{5^9.7^3+5^9.7^3.2^3}\)
\(=\frac{2^{12}.3^4\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}-\frac{5^{10}.7^3\left(1-7\right)}{5^9.7^3\left(1+8\right)}\)
\(=\frac{2}{3.4}-\frac{5.\left(-6\right)}{9}=\frac{2}{12}-\frac{-30}{9}\)
\(=\frac{1}{6}+\frac{10}{3}=\frac{1}{6}+\frac{20}{6}=\frac{21}{6}=\frac{7}{2}\)
Bạn ơi cho mk hỏi chỗ đoạn kia bạn lấy 1-7 ở đâu và 1 + 8 ở đâu