Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{-\frac{2}{3}+\frac{3}{4}-2}{\frac{2}{3}-\frac{3}{4}-2}.\frac{-\frac{2}{3}-\frac{3}{4}-2}{\frac{2}{3}+\frac{3}{4}+2}\)
\(=\frac{-\left(\frac{2}{3}-\frac{3}{4}+2\right)}{\frac{2}{3}-\frac{3}{4}-2}.\frac{-\left(\frac{2}{3}+\frac{3}{4}+2\right)}{\frac{2}{3}+\frac{3}{4}+2}\)
\(=\frac{23}{25}.\left(-1\right)\)
\(=\frac{-23}{25}\)
giải:
ta có :
\(\frac{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}}{1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}}:\frac{3+\frac{3}{2}+\frac{3}{3}+\frac{3}{4}}{2-\frac{2}{2}+\frac{2}{3}-\frac{2}{4}}\)
\(\frac{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}}{1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}}.\frac{2\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)}{3\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)}=\frac{2}{3}\)
Phần C đề thiếu
\(D=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)
\(\Rightarrow3D=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)
\(\Rightarrow3D-D=(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}})-\)\((\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}})\)
\(\Rightarrow2D=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow6D=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(\Rightarrow6D-2D=3-\frac{101}{3^{99}}+\frac{100}{3^{100}}\)
\(\Rightarrow4D=3-\frac{203}{3^{100}}\)
\(\Rightarrow D=\frac{3}{4}-\frac{\frac{203}{3^{100}}}{4}< \frac{3}{4}\left(đpcm\right)\)
\(\frac{1}{2}-\frac{2}{3}+\frac{3}{4}-\frac{4}{5}+\frac{5}{6}-\frac{6}{7}+\frac{4}{5}-\frac{3}{4}+\frac{2}{3}-\frac{1}{2}\)
= \(\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{-2}{3}+\frac{2}{3}\right)+\left(\frac{3}{4}-\frac{3}{4}\right)+\left(\frac{-4}{5}+\frac{4}{5}\right)+\frac{5}{6}-\frac{6}{7}\)
= \(\frac{5}{6}-\frac{6}{7}\)
= \(\frac{-1}{42}\)
\(\frac{1}{2}-\frac{2}{3}+\frac{3}{4}-\frac{4}{5}+\frac{5}{6}-\frac{6}{5}+\frac{4}{5}-\frac{3}{4}+\frac{2}{3}-\frac{1}{2}\)
\(=\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{-2}{3}+\frac{2}{3}\right)+\left(\frac{3}{4}-\frac{3}{4}\right)+\left(\frac{-4}{5}+\frac{4}{5}\right)+\frac{5}{6}-\frac{6}{7}\)
\(=\frac{5}{6}-\frac{6}{7}\)
\(=\frac{-1}{42}\)
\(\frac{1}{2}-\frac{2}{3}+\frac{3}{4}-\frac{4}{5}-\frac{6}{7}-\frac{5}{6}+\frac{4}{5}-\frac{3}{4}+\frac{2}{3}-\frac{1}{2}\)
\(=\left(\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{2}{3}-\frac{2}{3}\right)+\left(\frac{3}{4}-\frac{3}{4}\right)-\left(\frac{4}{5}-\frac{4}{5}\right)-\left(\frac{6}{7}+\frac{5}{6}\right)\)
\(=-\frac{71}{42}\)
\(=\frac{-1\left(\frac{2}{3}-\frac{3}{4}+2\right)}{\frac{2}{3}-\frac{3}{4}+2}-\frac{-1\left(\frac{2}{3}+\frac{3}{4}+2\right)}{\frac{2}{3}+\frac{3}{4}+2}\)
\(=-1-\left(-1\right)\)
\(=-1+1\)
\(=0\)
\(=\frac{-\left(\frac{2}{3}+\frac{3}{4}-2\right)}{\frac{2}{3}+\frac{3}{4}-2}-\frac{-\left(\frac{2}{3}+\frac{3}{4}+2\right)}{\frac{2}{3}+\frac{3}{4}+2}\)
\(=\left(-1\right)-\left(-1\right)\)
\(=0\)