K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2016

\(\text{Áp dụng tính chất của dãy tỉ số bằng nhau ta có: }\)

\(\frac{x}{-2}=\frac{3-2z}{5}=\frac{-2x}{4}=\frac{3-2z-2x}{5+4}=\frac{3-2.\left(x+z\right)}{9}=\frac{3-2.0}{9}=\frac{1}{3}\)

\(\text{Suy ra: }\frac{9}{y}=\frac{1}{3}\Rightarrow y=27\)

6 tháng 1 2016

27

Tik cho mk nha..................cảm ơn rất nhiều

1 tháng 10 2016

a/ \(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\) ; Suy ra \(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\) hay \(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau : 

\(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}=\frac{-x-y+z}{-6-4+5}=\frac{-10}{-5}=2\)

Suy ra : x = 2.6 = 12

y = 2.4 = 8

z = 2.5 = 10

b,c,d tương tự

e/ \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) ; \(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\)

Tới đây bạn làm tương tự a,b,c,d

f tương tự.

g/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Leftrightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)

Bạn áp dụng dãy tỉ số bằng nhau là ra.

h/ Áp dụng dãy tỉ số bằng nhau : 

\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)

Từ đó lại suy ra \(\begin{cases}12x=15y\\20z=12x\\15y=20z\end{cases}\)

Rút ra tỉ số và áp dụng dãy tỉ số bằng nhau.

 

 

1 tháng 10 2016

/vip/tranthimyduyen

17 tháng 10 2016

a) Ta có: \(\frac{x}{y}=\frac{3}{4}\Rightarrow4x=3y\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{2x+5y}{6+20}=\frac{10}{26}=\frac{5}{13}\)

\(x=\frac{5}{13}.3=\frac{15}{13}\)

\(y=\frac{5}{13}.4=\frac{20}{13}\)

b) Ta có: \(21x=19y\Rightarrow\frac{x}{19}=\frac{y}{21}=\frac{x-y}{19-21}=\frac{4}{-2}=-2\)

x = (-2) x 19 = -38

y = (-2) x 21 = -42

c) Ta có: \(\frac{x}{5}=\frac{y}{3}\Rightarrow\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2-y^2}{5^2-3^2}=\frac{4}{16}=\frac{1}{4}\)

\(x^2=\frac{1}{4}.25=\frac{25}{4}\Rightarrow x=+_-\frac{5}{2}\)

\(y^2=\frac{1}{4}.9=\frac{9}{4}\Rightarrow+_-\frac{3}{2}\)

nha bạn!

17 tháng 10 2016

\(\frac{x}{y}=\frac{3}{4}\)và 2x + 5y = 10

=> \(\frac{x}{3}=\frac{y}{4}\)=> \(\frac{2x}{6}=\frac{5y}{20}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{2x}{6}=\frac{5y}{20}=\frac{2x+5y}{6+20}=\frac{10}{26}=\frac{5}{13}\)

=> 2x = \(\frac{30}{13}\)=> x = \(\frac{15}{13}\)

     5y = \(\frac{100}{13}\)=> y = \(\frac{20}{13}\)

Vậy x = \(\frac{15}{13}\); y = \(\frac{20}{13}\)

21x = 19y và x - y = 4

Ta có :

\(\frac{x}{19}=\frac{y}{21}\)và x - y = 4

Áp dụng tính chất của dayc tỉ số bằng nhau là :

\(\frac{x}{19}=\frac{y}{21}=\frac{x-y}{19-21}=\frac{4}{-2}=-2\)

=> x = -38

     y = -42

Vậy x = - 38 ; y = - 42

\(\frac{x}{5}=\frac{y}{3}\)và x 2 - y 2 = 4

Đặt \(\frac{x}{5}=\frac{y}{3}=k\)

=> x = 5k , y = 3k

=> x 2 - y 2 = ( 5 k ) 2 - ( 3 k ) 2 = 25k 2 - 9 k = 4

                                                  16 k 2        = 4

                                                       k 2        = \(\frac{1}{4}\)

                                            => k = \(\frac{1}{2}\)hoặc x = \(\frac{-1}{2}\)

+ Xét k = \(\frac{1}{2}\)ta có :

=> x = \(\frac{5}{2}\)và y = \(\frac{3}{2}\)

+Xét  k = \(\frac{-1}{2}\)

=> x = \(\frac{-5}{2}\), y = \(\frac{-3}{2}\)

Vậy x = \(\frac{5}{2}\)và y = \(\frac{3}{2}\)

hoặc x = \(\frac{-5}{2}\), y = \(\frac{-3}{2}\)

8 tháng 11 2016

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x+2}{2}=\frac{y+3}{3}=\frac{z+4}{4}=\frac{2x+4}{4}=\frac{2x+4+y+3+z+4}{4+3+4}=\frac{\left(2x+y+z\right)+\left(4+3+4\right)}{11}=\frac{14+11}{11}=\frac{25}{11}\)

+) \(\frac{x+2}{2}=\frac{25}{11}\Rightarrow x+2=\frac{50}{11}\Rightarrow x=\frac{28}{11}\)

+) \(\frac{y+3}{3}=\frac{25}{11}\Rightarrow y+3=\frac{75}{11}\Rightarrow y=\frac{42}{11}\)

+) \(\frac{z+4}{4}=\frac{25}{11}\Rightarrow z+4=\frac{100}{11}\Rightarrow z=\frac{56}{11}\)

\(\Rightarrow xyz=\frac{28}{11}.\frac{42}{11}.\frac{56}{11}=\frac{65856}{1331}\)

Vậy \(xyz=\frac{65856}{1331}\)

8 tháng 11 2016

x=\(\frac{28}{9}\)