Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(8^{13}-9.8^{12}+9.8^{11}-9.8^{10}+.....-9.8^2+9.8-2\)
\(=8^{13}-\left(8+1\right).8^{12}+\left(8+1\right).8^{11}-\left(8+1\right).8^{10}+....-\left(8+1\right).8^2+\left(8+1\right).8-2\)
\(=8^{13}-8^{13}-8^{12}+8^{12}+8^{11}-8^{11}-8^{10}+....-8^3-8^2+8^2+8-2\)
\(=\left(8^{13}-8^{13}\right)-\left(8^{12}-8^{12}\right)+\left(8^{11}-8^{11}\right)-....-\left(8^2-8^2\right)+8-2\)
\(=8-2=6\)
Lời giải:
c.
$(x-3)(x^2+3x+9)-x^3=x^3-3^3-x^3=-27$ không phụ thuộc vào giá trị của biến
Ta có đpcm
d.
$(3x+2)(9x^2-6x+4)-9x(3x^2+1)+9x$
$=(3x)^3+2^3-27x^3-9x+9x$
$=27x^3+8-27x^3=8$ không phụ thuộc vào giá trị của biến
Ta có đpcm
c) Ta có: \(\left(x-3\right)\left(x^2+3x+9\right)-x^3\)
\(=x^3-27-x^3\)
=-27
d) Ta có: \(\left(3x+2\right)\left(9x^2-6x+4\right)-9x\left(3x^2+1\right)+9x\)
\(=27x^3+8-27x^3-9x+9x\)
=8
\(A=\left(9x^2-6x+1\right)+\left(x+\frac{1}{9x}\right)+9\)
\(=\left(3x-1\right)^2+\left(x+\frac{1}{9x}\right)+9\)
\(\ge0+2\sqrt{x.\frac{1}{9x}}+9\)
\(=0+\frac{2}{3}+9=\frac{29}{3}\)
Dãy số có 2 chữ số chia hết cho 3 là:[12,15,....,99]
Khoảng cách của từng số hạng là 3
Số số hạng là: (99-12):3+1=30(số)
Vậy có 30 số có 2 chữ số chia hết cho 3
a) \(\dfrac{9x^2-6x+1}{9x^2-1}\)
\(=\dfrac{\left(3x-1\right)^2}{\left(3x-1\right)\left(3x+1\right)}\)
\(=\dfrac{3x-1}{3x+1}\)
\(=\dfrac{3\cdot\left(-3\right)-1}{3\cdot\left(-3\right)+1}=\dfrac{-9-1}{-9+1}=\dfrac{-10}{-8}=\dfrac{5}{4}\)
b) Ta có: \(\dfrac{x^2-6x+9}{3x^2-9x}\)
\(=\dfrac{\left(x-3\right)^2}{3x\left(x-3\right)}\)
\(=\dfrac{x-3}{3x}\)
\(=\dfrac{-\dfrac{1}{3}-3}{3\cdot\dfrac{-1}{3}}=\dfrac{-\dfrac{10}{3}}{-1}=\dfrac{10}{3}\)
c) Ta có: \(\dfrac{x^2-4x+4}{2x^2-4x}\)
\(=\dfrac{\left(x-2\right)^2}{2x\left(x-2\right)}\)
\(=\dfrac{x-2}{2x}\)
\(=\dfrac{\dfrac{-1}{2}-2}{2\cdot\dfrac{-1}{2}}=\dfrac{-\dfrac{5}{2}}{-1}=\dfrac{5}{2}\)
x=8 nên x+1=9
\(F=x^{13}-9x^{12}+9x^{11}-9x^{10}+...-9x^2+9x-2\)
\(=x^{13}-x^{12}\left(x+1\right)+x^{11}\left(x+1\right)-x^{10}\left(x+1\right)+...-x^2\left(x+1\right)+x\left(x+1\right)-2\)
\(=x^{13}-x^{13}-x^{12}+x^{12}+...-x^3-x^2+x^2+x-2\)
=x-2
=8-2
=6