K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2016

\(Q=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

\(=>Q=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)+\left(\frac{c}{a+b}+1\right)-3\)

\(=>Q=\left(\frac{a+b+c}{b+c}\right)+\left(\frac{a+b+c}{a+c}\right)+\left(\frac{a+b+c}{a+b}\right)-3\)

\(=>Q=\left(a+b+c\right).\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)-3\)

\(=>Q=259.15-3=3882\)

Vậy Q=3882

5 tháng 3 2016

\(Q=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\frac{259-\left(b+c\right)}{b+c}+\frac{259-\left(a+c\right)}{a+c}+\frac{259-\left(a+b\right)}{a+b}\)

\(=259.\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)+\left[\frac{-\left(b+c\right)}{b+c}+\frac{-\left(a+c\right)}{a+c}+\frac{-\left(a+b\right)}{a+b}\right]\)

tới đây tự làm tiếp

11 tháng 3 2016

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)

\(\Rightarrow\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}\)

\(\Leftrightarrow\frac{b}{a}+\frac{c}{a}=\frac{a}{b}+\frac{c}{b}=\frac{a}{c}+\frac{b}{c}\)

Do đó \(P=\left(\frac{b}{a}+\frac{c}{a}\right)+\left(\frac{a}{b}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{b}{c}\right)=3\left(\frac{b}{a}+\frac{c}{a}\right)=\frac{3\left(b+c\right)}{a}\)

11 tháng 3 2016

0

 

29 tháng 7 2016

cho 2014=2013+1 thay vào ta có:\(B=x^{2013}-\left(2013+1\right)x^{2012}+\left(2013+1\right)x^{2011}-...-\left(2013+1\right)x^2+\left(2013+1\right)x-1\)

\(=x^{2013}-\left(x+1\right)x^{2012}+\left(x+1\right)x^{2011}-...-\left(x+1\right)x^2+\left(x+1\right)x-1\)

\(=x^{2013}-x^{2013}-x^{2012}+x^{2012}+x^{2011}-...-x^3-x^2+x^2+x-1\)

\(=x-1=2013-1=2012\)

29 tháng 3 2016

nhiều quáhuhu

23 tháng 3 2016

Từ dãy tỉ số bằng nhau đó, ta được:

\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)

hay \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta được:

\(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}=\frac{4\left(a+b+c+d\right)}{a+b+c+d}=4\)

Do đó,  \(\frac{a+b+c+d}{a}=4\) => a=\(\frac{a+b+c+d}{4}\)

               \(\frac{a+b+c+d}{b}=4\) =>b=\(\frac{a+b+c+d}{4}\)

               \(\frac{a+b+c+d}{c}=4\) =>c=\(\frac{a+b+c+d}{4}\)

              \(\frac{a+b+c+d}{d}=4\) => d=\(\frac{a+b+c+d}{4}\)

=>a=b=c=d

a+bc+d

Do đó, M=\(\frac{a+b}{c+d}+\frac{b+c}{c+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}=1+1+1+1=4\)

Vậy M có giá trị là 4

10 tháng 3 2016

Chưa học

13 tháng 12 2017
a
AH
Akai Haruma
Giáo viên
20 tháng 2 2017

Giải:

\(0\leq a,b,c\leq 1\Rightarrow ab,ac,ab\geq abc\)

Do đó mà \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\leq \frac{a+b+c}{abc+1}\)

Giờ chỉ cần chỉ ra \(\frac{a+b+c}{abc+1}\leq 2\). Thật vậy:

Do \(0\leq b,c\leq 1\Rightarrow (b-1)(c-1)\geq 0\Leftrightarrow bc+1\geq b+c\Rightarrow bc+a+1\geq a+b+c\)

Suy ra \( \frac{a+b+c}{abc+1}\leq \frac{bc+a+1}{abc+1}=\frac{bc+a-2abc-1}{abc+1}+2=\frac{(bc-1)(1-a)-abc}{abc+1}+2\)

Ta có \(\left\{\begin{matrix}bc\le1\\a\le1\\abc\ge0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}\left(bc-1\right)\left(1-a\right)\le1\\-abc\le0\end{matrix}\right.\) \(\Rightarrow \frac{(bc-1)(1-a)-abc}{abc+1}+2\leq 2\Rightarrow \frac{a+b+c}{abc+1}\leq 2\)

Chứng minh hoàn tất

Dấu bằng xảy ra khi \((a,b,c)=(0,1,1)\) và hoán vị.

20 tháng 2 2017

vao cau hoi hay OLM itm

20 tháng 3 2016

Thay a,b,c lần lượt vào biểu thức...

Tính được kết quả:

a) A= \(-\frac{7}{10}\)

b) B= \(-\frac{2}{7}\)

c) C= 0

20 tháng 3 2016

a) Thay a= \(-\frac{6}{5}\)vào BT A ta có:

\(\left(-\frac{6}{5}\right).\frac{1}{2}-\left(-\frac{6}{5}\right).\frac{2}{3}+\left(-\frac{6}{5}\right).\frac{3}{4}\)\(-\frac{7}{10}\)

Các bài dưới lần lượt thế thôi bạn

4 tháng 5 2019

Đặt x=a+b+c(x>3)

Ta có \(\left(x-6\right)^2\ge0\)(dấu '=' xảy ra khi x=6 hay a+b+c=6)\(\Leftrightarrow x^2-12x+36\ge0\Leftrightarrow x^2\ge12x-36\Leftrightarrow x^2\ge12\left(x-3\right)\Leftrightarrow\frac{x^2}{x-3}\ge12\)(1)

Áp dụng bđt \(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\)(dấu '=' xảy ra khi \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\))

Ta có \(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge\frac{\left(a+b+c\right)^2}{a+b+c-3}=\frac{x^2}{x-3}\)(2)

Từ (1) và (2)\(\Rightarrow\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge12\)(đpcm)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}\frac{a}{b-1}=\frac{b}{c-1}=\frac{c}{a-1}\\a+b+c=6\end{matrix}\right.\)\(\Leftrightarrow a=b=c=2\)

2 tháng 2 2016

 Đang suy nghĩ

2 tháng 2 2016

đang loaats