Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: f(1)=a+b+c=0
=>x=1 là nghiệm
b: Vì 5-6+1=0
nên f(x)=5x^2-6x+1 có một nghiệm là x=1
\(a+c=b\Rightarrow a-b+c=0\)
Ta thấy \(f\left(-1\right)=a-b+c=0\)Vậy x = -1 là 1 nghiệm của f(x)
Với \(a\ne0\)thì f(x) là 1 đa thức bậc hai và có nhiều nhất là 2 nghiệm, 1 nghiệm = 1 theo đề bài thì nghiệm còn lại như chứng minh trên là: -1.
Ta có: \(f\left(1\right)=a.1^2+b.1+c=a+b+c=0\)
nên \(x=1\) là một nghiệm của đa thức \(f\left(x\right)\)
Ta thấy \(8+\left(-6\right)+\left(-2\right)=0\) nên \(f\left(x\right)=8x^2-6x-2\) có một nghiệm \(x=1\)
Lời giải:
$f(1)=a+b+c=6$
$f(2)=4a+2b+c=16$
$f(12)-f(-9)=(144a+12b+c)-(81a-9b+c)$
$=63a+21b=21(3a+b)$
$=21[(4a+2b+c)-(a+b+c)]=21(16-6)=21.10=210$
Bài làm
a) Giả sử P(x) có một nghiệm là 1 thì:
p(1)=a*1^2+b*1+c
=a+b+c
Mà a+b+c=0
=>p(1)=0
=>đa thức p(x) có 1 nghiệm là 1(ĐPCM)
b)Giả sử P(x) có 1 nghiệm là -1 thì
p(-1)=a*(-1)^2+b*(-1)+c
=a-b+c
Mà a-b+c=0
=>p(-1)=0
=> đa thức p(x) có một nghiệm là -1(ĐPCM)
c)TA có:
p(1)=a*1^2+b*1+c=a+b+c
p(-1)=a.(-1)^2+b*(-1)+c=a-b+c
Mà p(1)=p(-1)
=>a+b+c=a-b+c
=>a+b+c-a+b-c=0
=>2b=0 =>b=0
+) Với b=0 =>p(x)=ax^2+c (1)
=>p(-x)=a*(-x)^2+c=a*x+c (2)
Từ (1)và (2) =>p(x)=p(-x) (ĐPCM)
Ta có \(f\left(x\right)=ax^2+bx+c\)
Thay x=-1 ta có:\(f\left(-1\right)=a-b+c=a+c-b\)
mà \(a+c=b\)
nên \(f\left(-1\right)=a+c-b=b-b=0\)
Vậy f(x)=ax^c+bx+c có nghiệm là -1