Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :x<y hay a/m <b/m=>a<b
So sánh x,y,z ta chuyển chúng cùng mau :2m
x=a/m =2a/2m va y=b/m =2b/2m va z=a+b/2m
Ma a<b
Suy ra :a+a<b +a
Hay 2a <a+b
Suy ra x<z (1)
Ma :a<b
Suy ra :a+b<b+b
Hay a+b ,2b
suy ra z < y (2)
Từ (1) và (2) ,kết luận :x < z < y
ta có : x < y hay a/m < b/m => a < b.
So sánh x, y, z ta chuyển chúng cùng mẫu : 2m
x = a/m = 2a/ 2m và y = b/m = 2b/2m và z = (a + b) / 2m
mà : a < b
suy ra : a + a < b + a
hay 2a < a + b
suy ra x < z (1)
mà : a < b
suy ra : a + b < b + b
hay a + b < 2b
suy ra z < y (2)
Ta có: x = a/m ; y = b/m ; z = a+b/2m
Vì x < y => a < b
x = 2a/2m ; y = 2b/2m ; z = a+b/2m
Vì a < b => a+a < b+a
2a < b+a
Vậy x < z (1)
b+a < b+b
b+a < 2b. Do đó z < y (2)
Từ (1) và (2) => x < z < y
x=a/m;y=b/m;x<y nên a<b
nên a+a<a+b
nên 2a/2m<a+b
nên x<z
tương tự có z<y
do đó x<z<y
theo đề bài ta có :
\(x=\frac{a}{m}\); \(y=\frac{b}{m}\)( a,b,m \(\in\)Z , m > 0 )
vì x < y \(\Leftrightarrow\)\(\frac{a}{m}< \frac{b}{m}\)
\(\Rightarrow a< b\Rightarrow a+a< b+a\Rightarrow2a< a+b\)
\(\Rightarrow\frac{2a}{2m}< \frac{a+b}{2m}\Rightarrow\frac{a}{m}< \frac{a+b}{2m}\Rightarrow x< z\left(1\right)\)
Vì a < b \(\Rightarrow\)a + b < b + c
\(\Rightarrow a+b< 2b\)
\(\Rightarrow\frac{a+b}{2m}< \frac{2b}{2m}\Rightarrow\frac{a+b}{2m}< \frac{b}{m}\Rightarrow z< y\left(2\right)\)
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(x< z< y\)
Theo bài ra ta có \(x< y\Rightarrow\frac{a}{m}< \frac{b}{m}\Rightarrow\frac{a}{2m}< \frac{b}{2m}\)
\(\Rightarrow\frac{a}{2m}+\frac{a}{2m}< \frac{a}{2m}+\frac{b}{2m}\Rightarrow\frac{2a}{2m}< \frac{a+b}{2m}\Rightarrow\frac{a}{m}< \frac{a+b}{2m}\Rightarrow x< z\) (1)
Từ x < y, ta lại có \(\frac{a}{2m}< \frac{b}{2m}\Rightarrow\frac{a}{2m}+\frac{b}{2m}< \frac{b}{2m}+\frac{b}{2m}\Rightarrow\frac{a+b}{2m}< \frac{2b}{2m}\Rightarrow\frac{a+b}{2m}< \frac{b}{m}\Rightarrow z< y\) (2)
Từ (1) và (2) suy ra đpcm